F - Modular Exponentiation
Problem description
The following problem is well-known: given integers n and m, calculate 2n mod m,
where 2n = 2·2·...·2 (n factors), and x mod y denotes the remainder of division of x by y.
You are asked to solve the "reverse" problem. Given integers n and m, calculate m mod 2n.
Input
The first line contains a single integer n (1 ≤ n ≤ 108).
The second line contains a single integer m (1 ≤ m ≤ 108).
Output
Output a single integer — the value of m mod 2n.
Examples
Input
- 4
42
Output
- 10
Input
- 1
58
Output
- 0
Input
- 98765432
23456789
Output
- 23456789
Note
In the first example, the remainder of division of 42 by 24 = 16 is equal to 10.
In the second example, 58 is divisible by 21 = 2 without remainder, and the answer is 0.
解题思路:由于给出的m最大值为108,于是暴力找出2k>108时的最小值k,解得k=27,所以只要n>26,直接输出m(取模一个比自己大的数字,结果为本身),反之直接取模运算,这样就不会发生数据溢出。(位运算是个好东西,长记性了)
AC代码:
- #include <bits/stdc++.h>
- using namespace std;
- int main()
- {
- int n,m;
- cin>>n>>m;
- cout<<(n>?m:m%(<<n))<<endl;
- return ;
- }
F - Modular Exponentiation的更多相关文章
- 焦作F Modular Production Line 费用流
题目链接 题解:这道题比赛的时候,学弟说是网络流,当时看N这么大,觉得网络流没法做,实际本题通过巧妙的建图,然后离散化. 先说下建图方式,首先每个覆盖区域,只有左右端点,如果我们只用左右端点的话,最多 ...
- ACM-ICPC 2018 焦作赛区网络预赛 F. Modular Production Line (区间K覆盖-最小费用流)
很明显的区间K覆盖模型,用费用流求解.只是这题N可达1e5,需要将点离散化. 建模方式步骤: 1.对权值为w的区间[u,v],加边id(u)->id(v+1),容量为1,费用为-w; 2.对所有 ...
- 【Hello 2018 A】 Modular Exponentiation
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 当a<b的时候 a%b==a 显然2^n增长很快的. 当2^n>=1e8的时候,直接输出m就可以了 [代码] #incl ...
- RSA算法原理与加密解密 求私钥等价求求模反元素 等价于分解出2个质数 (r*X+1)%[(p-1)(q-1)]=0
Rsapaper.pdf http://people.csail.mit.edu/rivest/Rsapaper.pdf [概述Abstract 1.将字符串按照双方约定的规则转化为小于n的正整数m, ...
- RSA (cryptosystem)
https://en.wikipedia.org/wiki/RSA_(cryptosystem) RSA is one of the first practical实用性的 public-key cr ...
- Effective Java 第三版——17. 最小化可变性
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...
- SSL加速卡调研的原因及背景
SSL加速卡调研的原因及背景 SSL加速卡调研的原因及背景 网络信息安全已经成为电子商务和网络信息业发展的一个瓶颈,安全套接层(SSL)协议能较好地解决安全处理问题,而SSL加速器有效地提高了网络安全 ...
- 2018 ACM 网络选拔赛 焦作赛区
A. Magic Mirror #include <cstdio> #include <cstdlib> #include <cmath> #include < ...
- Hello 2018 A,B,C,D
A. Modular Exponentiation time limit per test 1 second memory limit per test 256 megabytes input sta ...
随机推荐
- 《Mysql - 到底可不可以使用 Join ?》
一:Join 的问题? - 在实际生产中,使用 join 一般会集中在以下两类: - DBA 不让使用 Join ,使用 Join 会有什么问题呢? - 如果有两个大小不同的表做 join,应该用哪个 ...
- C# MVC ajax上传 文件
用普通的ajax提交表单的时候,不能把文件流传到后端去,所以要用到jquery.form.js jquery.form.js到官网下载或者从这里下载:http://pan.baidu.com/s/1c ...
- 铁大FaceBook的使用体验副本
铁大FaceBook是一个类似QQ和微信等聊天程序的缩小版网站,并且其针对领域较为狭窄:即只针对校园的学生和导员等人员.但其有值得推广的潜力性和可能性. 对于使用它的体验:第一点我感觉这个网站的界面很 ...
- 洛谷——P1183 多边形的面积
P1183 多边形的面积 多边形求面积公式: $\frac {\sum_{i=0}^{n-1}(x_iy_{i+1}-y_ix_{i+1})}{2}$ #include<bits/stdc++. ...
- 【hiho一下 第145周】智力竞赛
[题目链接]:http://hihocoder.com/contest/hiho145/problem/1 [题意] [题解] 设f[i][j]表示做对i道题,做错j道题能够到达的最好状态是什么; 这 ...
- 【codeforces 527D】Clique Problem
[题目链接]:http://codeforces.com/contest/527/problem/D [题意] 一维线段上有n个点 每个点有坐标和权值两个域分别为xi,wi; 任意一对点(i,j) 如 ...
- CSS3 (1) - Beginner
/Library/Frameworks/Python.framework/Versions/3.5/bin git clone https://*corp.com/*-dev.git /usr/loc ...
- hdu_1048_The Hardest Problem Ever_201311052052
The Hardest Problem Ever Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 树 (p155, 从中序和后续回复二叉树)
递归求解, You are to determine the value of the leaf node in a given binary tree that is the terminal no ...
- MongoDB:更改数据库位置(Windows)
MongoDB在Windows中默认的数据库目录是c:\data.如果在没有该目录的情况下,直接运行mongod.exe,就会报如下错误: 在某些情况下,我们并不想把mongoDB的数据库放在c盘,这 ...