前言

关于Netty的学习,最近看了不少有关视频和书籍,也收获不少,希望把我知道的分享给你们,一起加油,一起成长。前面我们对 Java IOBIONIOAIO进行了分析,相关文章链接如下:

深入分析 Java IO (一)概述

深入分析 Java IO (二)BIO

深入分析 Java IO (三)NIO

深入分析 Java IO (四)AIO

本篇文章我们就开始对 Netty来进行深入分析,首先我们来了解一下 JAVA NIOAIO的不足之处。

Java原生API之痛

虽然JAVA NIOJAVA AIO框架提供了多路复用IO/异步IO的支持,但是并没有提供上层“信息格式”的良好封装。用这些API实现一款真正的网络应用则并非易事。

JAVA NIOJAVA AIO并没有提供断连重连、网络闪断、半包读写、失败缓存、网络拥塞和异常码流等的处理,这些都需要开发者自己来补齐相关的工作。

AIO在实践中,并没有比NIO更好。AIO在不同的平台有不同的实现,windows系统下使用的是一种异步IO技术:IOCP;Linux下由于没有这种异步 IO 技术,所以使用的是epoll 对异步 IO 进行模拟。所以 AIO 在 Linux 下的性能并不理想。AIO 也没有提供对 UDP 的支持。

综上,在实际的大型互联网项目中,Java 原生的 API 应用并不广泛,取而代之的是一款第三方Java 框架,这就是Netty

Netty的优势

Netty 提供 异步的、事件驱动的网络应用程序框架和工具,用以快速开发高性能、高可靠性的网络服务器和客户端程序。

非阻塞 I/O

Netty 是基于 Java NIO API 实现的网络应用框架,使用它可以快速简单的开发网络应用程序,如服务器和客户端程序。Netty 大大简化了网络程序开发的过程,如 TCP 和 UDP 的 Socket 服务的开发。

由于是基于 NIO 的 API,因此,Netty 可以提供非阻塞的 I/O操作,极大的提升了性能。同时,Netty 内部封装了 Java NIO API 的复杂性,并提供了线程池的处理,使得开发 NIO 的应用变得极其简单。

丰富的协议

Netty 提供了简单、易用的 API ,但这并不意味着应用程序会有难维护和性能低的问题。Netty 是一个精心设计的框架,它从许多协议的实现中吸收了很多的经验,如 FTP 、SMTP、 HTTP、许多二进制和基于文本的传统协议。

Netty 支持丰富的网络协议,如TCPUDPHTTPHTTP/2WebSocketSSL/TLS等,这些协议实现开箱即用,因此,Netty 开发者能够在不失灵活的前提下来实现开发的简易性、高性能和稳定性。

异步和事件驱动

Netty 是异步事件驱动的框架,该框架体现为所有的I/O操作都是异步的,所有的I/O调用会立即返回,并不保证调用成功与否,但是调用会返回ChannelFuture。Netty 会通过 ChannelFuture通知调用是成功了还是失败了,抑或是取消了。

同时,Netty 是基于事件驱动的,调用者并不能立即获得结果,而是通过事件监听机制,用户可以方便地主动获取或者通过通知机制获得I/O操作的结果。

Future对象刚刚创建时,处于非完成状态,调用者可以通过返回的ChannelFuture来获取操作执行的状态,再通过注册监听函数来执行完成后的操作,常见有如下操作:

  • 通过isDone方法来判断当前操作是否完成。
  • 通过isSuccess方法来判断已完成的当前操作是否成功。
  • 通过getCause方法来获取已完成的当前操作失败的原因。
  • 通过isCancelled方法来判断已完成的当前操作是否被取消。
  • 通过addListener方法来注册监听器,当操作已完成(isDone方法返回完成),将会通知指定的监听器;如果future对象已完成,则理解通知指定的监听器。

例如:下面的代码中绑定端口是异步操作,当绑定操作处理完,将会调用相应的监听器处理逻辑。

serverBootstrap.bind(port).addListener(future -> {
if(future.isSuccess()){
System.out.println("端口绑定成功!");
}else {
System.out.println("端口绑定失败!");
}
});

相比传统的阻塞 I/O,Netty 异步处理的好处是不会造成线程阻塞,线程在 I/O操作期间可以执行其他的程序,在高并发情形下会更稳定并拥有更高的吞吐量。

精心设计的API

Netty 从开始就为用户提供了体验最好的API及实现设计。

例如,在用户数较小的时候可能会选择传统的阻塞API,毕竟与 Java NIO 相比使用阻塞 API 将会更加容易一些。然而,当业务量呈指数增长并且服务器需要同时处理成千上万的客户连接,便会遇到问题。这种情况下可能会尝试使用 Java NIO,但是复杂的 NIO Selector 编程接口又会耗费大量的时间并最终会阻碍快速开发。

Netty 提供了一个叫作 channel的统一的异步I/O编程接口,这个编程接口抽象了所有点对点的通信操作。也就是说,如果应用是基于Netty 的某一种传输实现,那么同样的,应用也可以运行在 Netty 的另一种传输实现上。Channel常见的子接口有:

丰富的缓冲实现

Netty 使用自建的缓存 API,而不是使用 Java NIO 的 ByteBuffer 来表示一个连续的字节序列。与 ByteBuffer 相比,这种方式拥有明显的优势。

Netty 使用新的缓冲类型 ByteBuf ,并且被设计为可从底层解决 ByteBuffer 问题,同时还满足日常网络应用开发需要的缓冲类型。

Netty 重要有以下特性:

  • 允许使用自定义的缓冲类型。
  • 复合缓冲类型中内置透明的零拷贝实现。
  • 开箱即用动态缓冲类型,具有像 StringBuffer 一样的动态缓冲能力。
  • 不再需要调用flip()方法。
  • 正常情况下具有比ByteBuffer更快的响应速度。

高效的网络传输

Java 原生的序列化主要存在以下几个弊端:

  • 无法跨语言。

  • 序列化后码流太大。

  • 序列化后性能太低。

业界有非常多的框架用于解决上述问题,如 Google ProtobufJBoss MarshallingFacebook Thrift等。针对这些框架,Netty 都提供了相应的包将这些框架集成到应用中。同时,Netty 本身也提供了众多的编解码工具,方便开发者使用。开发者可以基于 Netty 来开发高效的网络传输应用,例如:高性能的消息中间件 Apache RocketMQ、高性能RPC框架Apache Dubbo等。

Netty 核心概念

从上述的架构图可以看出,Netty 主要由三大块组成:

  • 核心组件
  • 传输服务
  • 协议

核心组件

核心组件包括:事件模型、字节缓冲区和通信API

事件模型

Netty 是基于异步事件驱动的,该框架体现为所有的I/O操作都是异步的,调用者并不能立即获得结果,而是通过事件监听机制,用户可以方便地主动获取或者通过通知机制获得I/O操作的结果。

Netty 将所有的事件按照它们与入站或出站数据流的相关性进行了分类。

可能由入站数据或者相关的状态更改而触发的事件包括以下几项:

  • 连接已被激活或者连接失活。
  • 数据读取。
  • 用户事件。
  • 错误事件。

出站事件是未来将会触发的某个动作的操作结果,包括以下动作:

  • 打开或者关闭到远程节点的连接。
  • 将数据写到或者冲刷到套接字。

每个事件都可以被分发到ChannelHandler类中的某个用户实现的方法。

字节缓冲区

Netty 使用了区别于Java ByteBuffer 的新的缓冲类型ByteBuf,ByteBuf提供了丰富的特性。

通信API

Netty 的通信API都被抽象到Channel里,以统一的异步I/O编程接口来满足所有点对点的通信操作。

传输服务

Netty 内置了一些开箱即用的传输服务。因为并不是它们所有的传输都支持每一种协议,所以必须选择一个和应用程序所使用的协议相兼容的传输。以下是Netty提供的所有的传输。

NIO

io.netty.channel.socket.nio包用于支持NIO。该包下面的实现是使用java.nio.channels包作为基础(基于选择器的方式)。

epoll

io.netty.channel.epoll包用于支持由 JNI 驱动的 epoll 和 非阻塞 IO。

需要注意的是,这个epoll传输只能在 Linux 上获得支持。epoll同时提供多种特性,如:SO_REUSEPORT 等,比 NIO传输更快,而且是完全非阻塞的。

OIO

io.netty.channel.socket.oio包用于支持使用java.net包作为基础的阻塞I/O

本地

io.netty.channel.local包用于支持在 VM 内部通过管道进行通信的本地传输。

内嵌

io.netty.channel.embedded包作为内嵌传输,允许使用ChannelHandler而又不需要一个真正的基于网络的传输。

协议支持

Netty 支持丰富的网络协议,如TCPUDPHTTPHTTP/2WebSocketSSL/TLS等,这些协议实现开箱即用,因此,Netty 开发者能够在不失灵活的前提下来实现开发的简易性、高性能和稳定性。

Netty简单应用

引入Maven依赖

<dependency>
<groupId>io.netty</groupId>
<artifactId>netty-all</artifactId>
<version>4.1.49.Final</version>
</dependency>

服务端的管道处理器

public class NettyServerHandler extends ChannelInboundHandlerAdapter {

    //读取数据实际(这里我们可以读取客户端发送的消息)
/*
1. ChannelHandlerContext ctx:上下文对象, 含有 管道pipeline , 通道channel, 地址
2. Object msg: 就是客户端发送的数据 默认Object
*/
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
System.out.println("server ctx =" + ctx);
Channel channel = ctx.channel();
//将 msg 转成一个 ByteBuf
//ByteBuf 是 Netty 提供的,不是 NIO 的 ByteBuffer.
ByteBuf buf = (ByteBuf) msg;
System.out.println("客户端发送消息是:" + buf.toString(CharsetUtil.UTF_8));
System.out.println("客户端地址:" + channel.remoteAddress());
} //数据读取完毕
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
//writeAndFlush 是 write + flush
//将数据写入到缓存,并刷新
//一般讲,我们对这个发送的数据进行编码
ctx.writeAndFlush(Unpooled.copiedBuffer("公司最近账户没啥钱,再等几天吧!", CharsetUtil.UTF_8));
} //处理异常, 一般是需要关闭通道
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
ctx.close();
}
}

NettyServerHandler继承自ChannelInboundHandlerAdapter,这个类实现了ChannelInboundHandler接口。ChannelInboundHandler提供了许多事件处理的接口方法。

这里覆盖了channelRead()事件处理方法。每当从客户端收到新的数据时,这个方法会在收到消息时被调用。

channelReadComplete()事件处理方法是数据读取完毕时被调用,通过调用ChannelHandlerContextwriteAndFlush()方法,把消息写入管道,并最终发送给客户端。

exceptionCaught()事件处理方法是,当出现Throwable对象时才会被调用。

服务端主程序

public class NettyServer {

    public static void main(String[] args) throws Exception {
//创建BossGroup 和 WorkerGroup
//说明
//1. 创建两个线程组 bossGroup 和 workerGroup
//2. bossGroup 只是处理连接请求 , 真正的和客户端业务处理,会交给 workerGroup完成
//3. 两个都是无限循环
//4. bossGroup 和 workerGroup 含有的子线程(NioEventLoop)的个数
// 默认实际 cpu核数 * 2
//
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup(); //8
try {
//创建服务器端的启动对象,配置参数
ServerBootstrap bootstrap = new ServerBootstrap();
//使用链式编程来进行设置
bootstrap.group(bossGroup, workerGroup) //设置两个线程组
.channel(NioServerSocketChannel.class) //bossGroup使用NioSocketChannel 作为服务器的通道实现
.option(ChannelOption.SO_BACKLOG, 128) // 设置线程队列得到连接个数 option主要是针对boss线程组,
.childOption(ChannelOption.SO_KEEPALIVE, true) //设置保持活动连接状态 child主要是针对worker线程组
.childHandler(new ChannelInitializer<SocketChannel>() {//workerGroup使用 SocketChannel创建一个通道初始化对象 (匿名对象)
//给pipeline 设置处理器
@Override
protected void initChannel(SocketChannel ch) throws Exception {
//可以使用一个集合管理 SocketChannel, 再推送消息时,可以将业务加入到各个channel 对应的 NIOEventLoop 的 taskQueue 或者 scheduleTaskQueue
ch.pipeline().addLast(new NettyServerHandler());
}
}); // 给我们的workerGroup 的 EventLoop 对应的管道设置处理器 System.out.println(".....服务器 is ready...");
//绑定一个端口并且同步, 生成了一个 ChannelFuture 对象
//启动服务器(并绑定端口)
ChannelFuture cf = bootstrap.bind(7788).sync();
//给cf 注册监听器,监控我们关心的事件
cf.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (cf.isSuccess()) {
System.out.println("服务已启动,端口号为7788...");
} else {
System.out.println("服务启动失败...");
}
}
});
//对关闭通道进行监听
cf.channel().closeFuture().sync();
} finally {
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}

NioEventLoopGroup是用来处理I/O操作的多线程事件循环器。Netty 提供了许多不同的EventLoopGroup的实现来处理不同的传输。

上面的服务端应用中,有两个NioEventLoopGroup被使用。第一个叫作bossGroup,用来接收进来的连接。第二个叫作workerGroup,用来处理已经被接收的连接,一旦 bossGroup接收连接,就会把连接的信息注册到workerGroup上。

ServerBootstrap是一个NIO服务的引导启动类。可以在这个服务中直接使用Channel

  • group方法用于 设置EventLoopGroup
  • 通过Channel方法,可以指定新连接进来的Channel类型为NioServerSocketChannel类。
  • childHandler用于指定ChannelHandler,也就是前面实现的NettyServerHandler
  • 可以通过option设置指定的Channel来实现NioServerSocketChannel的配置参数。
  • childOption主要设置SocketChannel的子Channel的选项。
  • bind用于绑定端口启动服务。

客户端管道处理器

public class NettyClientHandler extends ChannelInboundHandlerAdapter {

    //当通道就绪就会触发该方法
@Override
public void channelActive(ChannelHandlerContext ctx) throws Exception {
System.out.println("client ctx =" + ctx);
ctx.writeAndFlush(Unpooled.copiedBuffer("老板,工资什么时候发给我啊?", CharsetUtil.UTF_8));
} //当通道有读取事件时,会触发
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
ByteBuf buf = (ByteBuf) msg;
System.out.println("服务器回复的消息:" + buf.toString(CharsetUtil.UTF_8));
System.out.println("服务器的地址: "+ ctx.channel().remoteAddress());
} //处理异常, 一般是需要关闭通道
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
cause.printStackTrace();
ctx.close();
}
}

channelRead方法中将接收到的消息转化为字符串,方便在控制台上打印出来。

channelRead接收到的消息类型为ByteBufByteBuf提供了转为字符串的方便方法。

客户端主程序

public class NettyClient {

    public static void main(String[] args) throws Exception {
//客户端需要一个事件循环组
EventLoopGroup group = new NioEventLoopGroup();
try {
//创建客户端启动对象
//注意客户端使用的不是 ServerBootstrap 而是 Bootstrap
Bootstrap bootstrap = new Bootstrap();
//设置相关参数
bootstrap.group(group) //设置线程组
.channel(NioSocketChannel.class) // 设置客户端通道的实现类(反射)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
protected void initChannel(SocketChannel ch) throws Exception {
ch.pipeline().addLast(new NettyClientHandler()); //加入自己的处理器
}
});
System.out.println("客户端 ok..");
//启动客户端去连接服务器端
//关于 ChannelFuture 要分析,涉及到netty的异步模型
ChannelFuture channelFuture = bootstrap.connect("127.0.0.1", 7788).sync();
//给关闭通道进行监听
channelFuture.channel().closeFuture().sync();
} finally {
group.shutdownGracefully();
}
}
}

客户端只需要一个NioEventLoopGroup就可以了。

测试运行

分别启动服务器 NettyServer 和客户端 NettyClient程序

服务端控制台输出内容:

.....服务器 is ready...
服务已启动,端口号为7788...
server ctx =ChannelHandlerContext(NettyServerHandler#0, [id: 0xa1b2233c, L:/127.0.0.1:7788 - R:/127.0.0.1:63239])
客户端发送消息是:老板,工资什么时候发给我啊?
客户端地址:/127.0.0.1:63239

客户端控制台输出内容:

客户端 ok..
client ctx =ChannelHandlerContext(NettyClientHandler#0, [id: 0x21d6f98e, L:/127.0.0.1:63239 - R:/127.0.0.1:7788])
服务器回复的消息:公司最近账户没啥钱,再等几天吧!
服务器的地址: /127.0.0.1:7788

至此,一个简单的基于Netty开发的服务端和客户端就完成了。

总结

本篇文章主要讲解了 Netty 产生的背景、特点、核心组件及如何快速开启第一个 Netty 应用。

后面我们会分析Netty架构设计ChannelChannelHandler、字节缓冲区ByteBuf线程模型编解码引导程序等方面的知识。

结尾

我是一个正在被打击还在努力前进的码农。如果文章对你有帮助,记得点赞、关注哟,谢谢!

Netty 源码分析系列(一)Netty 概述的更多相关文章

  1. Netty 源码分析系列(二)Netty 架构设计

    前言 上一篇文章,我们对 Netty做了一个基本的概述,知道什么是Netty以及Netty的简单应用. Netty 源码分析系列(一)Netty 概述 本篇文章我们就来说说Netty的架构设计,解密高 ...

  2. netty源码分析系列文章

    netty源码分析系列文章 nettynetty源码阅读netty源码分析  想在年终之际将对netty研究的笔记记录下来,先看netty3,然后有时间了再写netty4的,希望对大家有所帮助,这个是 ...

  3. netty源码分析(十八)Netty底层架构系统总结与应用实践

    一个EventLoopGroup当中会包含一个或多个EventLoop. 一个EventLoop在它的整个生命周期当中都只会与唯一一个Thread进行绑定. 所有由EventLoop所处理的各种I/O ...

  4. Netty源码分析第2章(NioEventLoop)---->第1节: NioEventLoopGroup之创建线程执行器

    Netty源码分析第二章: NioEventLoop 概述: 通过上一章的学习, 我们了解了Server启动的大致流程, 有很多组件与模块并没有细讲, 从这个章开始, 我们开始详细剖析netty的各个 ...

  5. Netty源码分析第1章(Netty启动流程)---->第3节: 服务端channel初始化

    Netty源码分析第一章:Netty启动流程   第三节:服务端channel初始化 回顾上一小节的initAndRegister()方法: final ChannelFuture initAndRe ...

  6. Netty源码分析第1章(Netty启动流程)---->第4节: 注册多路复用

    Netty源码分析第一章:Netty启动流程   第四节:注册多路复用 回顾下以上的小节, 我们知道了channel的的创建和初始化过程, 那么channel是如何注册到selector中的呢?我们继 ...

  7. Netty源码分析第1章(Netty启动流程)---->第5节: 绑定端口

    Netty源码分析第一章:Netty启动步骤 第五节:绑定端口 上一小节我们学习了channel注册在selector的步骤, 仅仅做了注册但并没有监听事件, 事件是如何监听的呢? 我们继续跟第一小节 ...

  8. Netty源码分析(前言, 概述及目录)

    Netty源码分析(完整版) 前言 前段时间公司准备改造redis的客户端, 原生的客户端是阻塞式链接, 并且链接池初始化的链接数并不高, 高并发场景会有获取不到连接的尴尬, 所以考虑了用netty长 ...

  9. Netty源码分析第5章(ByteBuf)---->第5节: directArena分配缓冲区概述

    Netty源码分析第五章: ByteBuf 第五节: directArena分配缓冲区概述 上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这 ...

随机推荐

  1. Linux中测试网络命令

    ping IP -t 是持续性查看网络状态

  2. 精尽Spring Boot源码分析 - 序言

    该系列文章是笔者在学习 Spring Boot 过程中总结下来的,里面涉及到相关源码,可能对读者不太友好,请结合我的源码注释 Spring Boot 源码分析 GitHub 地址 进行阅读 Sprin ...

  3. Linux安装及管理程序

    一,常见的软件包封装类型 二.RPM包管理工具 三.查询RPM软件包信息 四.安装.升级.卸载RPM软件包 五.解决软件包依赖关系的方法 六.源代码编译 七.安装yum源仓库 一,常见的软件包封装类型 ...

  4. Redisson 分布式锁实现之源码篇 → 为什么推荐用 Redisson 客户端

    开心一刻 一男人站在楼顶准备跳楼,楼下有个劝解员拿个喇叭准备劝解 劝解员:兄弟,别跳 跳楼人:我不想活了 劝解员:你想想你媳妇 跳楼人:媳妇跟人跑了 劝解员:你还有兄弟 跳楼人:就是跟我兄弟跑的 劝解 ...

  5. 跟我一起学Go系列:Go gRPC 安全认证方式-Token和自定义认证

    Go gRPC 系列: 跟我一起学Go系列:gRPC安全认证机制-SSL/TLS认证 跟我一起学 Go 系列:gRPC 拦截器使用 跟我一起学 Go 系列:gRPC 入门必备 接上一篇继续讲 gRPC ...

  6. hdu 3397 Sequence operation 线段树 区间更新 区间合并

    题意: 5种操作,所有数字都为0或1 0 a b:将[a,b]置0 1 a b:将[a,b]置1 2 a b:[a,b]中的0和1互换 3 a b:查询[a,b]中的1的数量 4 a b:查询[a,b ...

  7. SpringBoot Redis 2.0.x

    redis的安装 在笔者之前的文章中有介绍redis的安装,不会的可以去看 笔者之前写的文章redis安装 完成安装后如果不熟悉redis的操作,redis官方文档也有基本操作指南,redis基本操作 ...

  8. 无需手动输入命令,简单3步即可在K8S集群中启用GPU!

    随着全球各大企业开始广泛采用Kubernetes,我们看到Kubernetes正在向新的阶段发展.一方面,Kubernetes被边缘的工作负载所采用并提供超越数据中心的价值.另一方面,Kubernet ...

  9. Sentinel流控与熔断

    参考: https://thinkwon.blog.csdn.net/article/details/103770879 项目结构 com.guo     ├── guo-sentinel       ...

  10. linux之软连接 硬链接 link ln

    p.p1 { margin: 0; font: 12px "Helvetica Neue"; color: rgba(220, 161, 13, 1) } p.p2 { margi ...