当前我们组管理着一套审核系统,除了数据源是服务端提供的,其余后台管理都是由我们组在维护。

  这个系统就是将APP中的各类社交信息送到后台,然后有专门的审核人员来判断信息是否合规,当然在送到后台之前已经让机器审核了一遍。

  在去年8月份上线后,日积月累,有张数据表变得比较庞大,截止到目前将近5800W条,数据容量31.21G,每条记录大概是582B。

  由于数据量庞大,在检索时也将模糊查询撤掉,并且为了便于查询,还加了很多索引,目前的索引容量都达到了12.2G,审核人员也经常反馈系统使用起来很卡。

一、制订优化方案

  在了解到他们的诉求后,我们也展开了优化方案。

1)分表

  首先想到的分表,第一种横向分表,也就是将数据以日或月为单位,目前一天的量在20W条左右,一个月的话在600W条左右。

  但是这么分的话,在维护上就比较复杂,例如查询时,假设正好遇到跨天或跨月的条件,那么数据组织就比较繁琐了。

  第二种分表是利用MySQL的语法:分区表,就是让MySQL来做分表这个粗活,对我们这些使用者来说该怎么查还是怎么查。

  工作量都移交给了MySQL,听上去很不错,而且网络上教程一堆,下面是一种范围分区。

CREATE TABLE partition_table (
id INT,
date DATETIME
)
PARTITION BY RANGE (TO_DAYS(date) ) (
PARTITION p1 VALUES LESS THAN ( TO_DAYS('20211001') ),
PARTITION p2 VALUES LESS THAN ( TO_DAYS('20211002') ),
PARTITION p3 VALUES LESS THAN ( TO_DAYS('20211003') ),
PARTITION p4 VALUES LESS THAN ( TO_DAYS('20211004') ),
PARTITION p5 VALUES LESS THAN (MAXVALUE)
);

  但是有网友说,随着数据量的增加,分区表也会有性能问题,具体达到多少量会有显著的性能问题,我没有深入研究,但是量上去了,总归还是会有点问题的。

  分表的方案就这么废弃了,然后想到将数据同步到 ElasticSearch 中,这样的话,检索就毫无压力了,不过数据是需要频繁的更新的,不知道会不会影响ES的性能。

  并且改造成本也是巨大的,要改动很多地方,而目前最紧缺的就是人力资源了,即使我们花大力气改造好了,当前测试组也抽不出人手做质量保障。

  匆忙上线势必会影响审核人员的使用,虽然系统有这个那个的小毛病,但至少还能稳定的在运行中,也就作罢了。

2)MySQL归档

  在仔细思考后,又想到了另一个改造成本最小的方案:MySQL归档。所谓归档就是将大表中的一组数据迁移到另一张表中。

  与审核人员一对一沟通后,了解到,其实他们会用到的数据也就是半个月内的,半个月之前的数据很少会用到。

  也就是说表中存在很明显地冷热数据,并且冷数据被操作的概率非常低,几乎不会访问。

  那我只要每天将这部分冷数据迁移出去,就能保障审核记录表的容量,也就能避免性能问题。

二、实践

  我需要编写一个定时任务,在每天下午两点运行,之所以在白天运行是为了遇到问题时,能第一时间响应。

  数据归档简单地说,就是先从源表中查询数据,再将数据插入到存量表中,最后删除源表中的数据。

  为了保证数据不会误删和遗漏,并且还要保证SQL读写的性能,在编写代码时比较谨慎,预演了多种场景。

1)批量插入

  根据审核人员反馈的情况,我会保留记录表两个月的数据,两个月之前的数据全部迁移。

  每天的数据量是20W左右,每小时的数据量在1.5W左右,根据这个信息,我会每次取半个小时的数据,批量添加到另一张存量表中。

  我采用的ORM系统是 Sequelize,其批量添加的语法采用的是 INSERT INTO VALUES,就是将多条 INSERT 语句合并成一条,我还特地将数据有序排列,提升插入性能。

INSERT INTO `demo_table` (`id`, `uid`, `content`) VALUES
('1', '1001', 'content0'),
('2', '1002', 'content1');

  有网友做过实验,批量插入的效率比单条插入高的多,100W的数据量要快21倍左右,1000W的数据要快56倍左右。

  还有另一种批量插入的语法是INSERT INTO SELECT,将查询表的结果复制到另一张表中,目标表中任何已存在的行都不会受影响。

insert into `demo_table`
select * from `record` where create_time between '2020-08-01 00:00:00' and '2020-08-31 23:59:59';

  在搜索文档时有个网友诉说了这种插入方式引起了一个严重的事故,以上面的SQL为例,由于没有为 create_time 配置索引,发生了全表扫描。

  当数据量巨大时,数据库就挂起了,无法读写。

2)Sequelize的时间

  如果要每次取半个小时的数据,那么就得有一对起始和结束时间,这个好弄,用 moment 库算一下就好了。

  但是在使用时发现了问题,下面是采用Sequelize查询方法(find)时打印出的时间范围。

`create_time` >= '2020-08-06 04:00' AND `create_time` < '2020-08-06 05:00'

  然后是在调用删除方法(destroy)时打印出的时间范围,可以明显的看出两个时间相差8个小时,也就是存在时区的问题。

`create_time` >= '2020-08-06 12:00' AND `create_time` < '2020-08-06 13:00'

  查找相关资料后才得知,Sequelize 为了达到最好的兼容性,其 timezone(时区)默认是 +00:00,在将时间插入到数据库中时都会转换成UTC时间。

  上海所在的地区是东八区,所以得到的UTC时间需要减去8小时。那按理说数据库中保存的时间都会减8小时,但是每次在数据库中查询时,显示的时间又是正确的。

  这是因为表中的日期字段类型是 TIMESTAMP,它会自动转换成数据库时区的时间,而 DATETIME相当于一个常量,不会做自动转换。

  继续回到刚刚的问题,下面是我的查询条件,在调用 find() 时会自动减去8,而 destroy() 就没有这步转换,就会导致查询出来的数据和删除的数据不匹配,出现误删的问题。

const where = {
create_time: {
$gte: '2020-08-06 12:00',
$lt: '2020-08-06 13:00'
}
};

  想到一个办法,那就是取当前时间段的最后一条记录,并且将其ID值作为删除条件,即删除条件改成小于等于指定的ID,但在后面的实践中发现一个隐患。

  那就是当ID大的一个记录,如果它的时间比较小,那么就会被误删。延续最后一条记录的思路,将其创建时间作为删除条件,就能让两者匹配了。

  顺便说下,为什么不用 ID 来作为区间,主要担心的一个问题是类型溢出。

  下面的两条数字,第一条是调用Number.MAX_SAFE_INTEGER,而第二条是MySQL的bigint类型,两者都是所能表示的最大数据范围。

9007199254740991
9223372036854775807

  后者要比前者多了三位,那么在Node中做简单的累加时,有可能出现溢出。顺便说一句,Sequelize在从数据库中读取到ID后,会将其作为字符串返回。

3)事务

  为了保证先插入,后删除的顺序,引入了事务,保持原子性,一旦出现问题,就回滚。

  Sequelize 提供的事务分为托管和非托管,就是手动调用 commit() 和 rollback() 的区别,我采用了非托管。

  此处又遇到一个问题,在阿里云上做迁移数据表,运维说需要放到另一个库中,因为两者表名要相同,而sequelize的事务需要由数据库实例调用。

  也就是说在完成插入和删除时需要分别创建两个不同的事务,两次commit()。

try {
await t1.commit();
await t2.commit();
} catch (error) {
await t1.rollback();
await t2.rollback();
}

  在上面的代码中,假设 t1完成了提交,t2在提交时发生了问题,进入了 catch() 分支内,那么此处直接调用 t1.rollback() 很可能会报下面的错误。

Error: Transaction cannot be rolled back because it has been finished with state: commit

  目前的做法是保证插入一定要成功,也就是保留一个事务,若删除失败,那么就发告警,先手动处理,但感觉这种情况应该也不多。

try {
const t1 = await mysql.backend.transaction();
//将数据添批量加进备份表 INSERT INTO VALUES
await services.report.insert(list, { transaction: t1 });
const { createTime } = list[list.length - 1];
//删除原表数据
await services.report.del({
createTime: {
$lte: createTime
}
});
await t1.commit();
} catch (error) {
// 回滚
await t1.rollback();
console.log(error);
// 发送警告 TODO
}

4)造数据

  为了能模拟数据的批量插入和删除,记录表需要包含充足的数据,所以得写脚本实现。

  本来的设想是塞入1000W条数据,每小时加2W条,如下所示,简单粗暴。

for (let i = 0; i < 500; i++) {
const list = [];
for (let j = 0; j < 20000; j++) {
list.push({
createTime: moment("2020-10-01 00:00").add(i, "hours")
});
}
await services.report.savePatch(list);
}

  运行时就报栈溢出,只得温柔一点,降低数据量,只赛了150W条数据,每小时加1.5W条,这下终于可以了,可以继续后面的测试了。

FATAL ERROR: Reached heap limit Allocation failed - JavaScript heap out of memory

  为了能保障质量,还特地将迁移逻辑包装成一个接口,让QA人员测试。

5)数据清理

  在执行定时任务之前,我还会将原表中的数据只保留一个月,并且将表中原有的数据整体迁移至一张备份表中。

  在通过 DELETE 命令清理数据时,发生了意外,我本来打算直接删除5000多W条数据,但是直接卡住没有反应,还把表给锁住了。

  网上的方案基本都是将需要的数据移到临时表,然后再删除原表,最后修改临时表的名称,但是我的表不能删除,因为数据再不断的插入。

  后面改成1000W一个批次,情况也不理想,再缩小,改成500W一批次,现在可以运行了,但是执行了将近半小时。

  再缩小范围,改成100W一次删除,就能5分钟完成。

参考资料:

MySQL 最佳实践 · 分区表基本类型

为什么MySQL不建议使用delete删除数据?

数据归档二三事儿

Insert into select语句引发的生产事故

大批量数据高效插入数据库表

mysql千万级数据分表迁移方案板

关于“时间”的一次探索

Node.js躬行记(13)——MySQL归档的更多相关文章

  1. Node.js躬行记(6)——自制短链系统

    短链顾名思义是一种很短的地址,应用广泛,例如页面中有一张二维码图片,包含的是一个原始地址(如下所示),如果二维码中的链接需要修改,那么就得发代码替换掉. 原始地址:https://github.com ...

  2. Node.js躬行记(23)——Worker threads

    Node.js 官方提供了 Cluster 和 Child process 创建子进程,通过 Worker threads 模块创建子线程.但前者无法共享内存,通信必须使用 JSON 格式,有一定的局 ...

  3. Node.js躬行记(2)——文件系统和网络

    一.文件系统 fs模块可与文件系统进行交互,封装了常规的POSIX函数.POSIX(Portable Operating System Interface,可移植操作系统接口)是UNIX系统的一个设计 ...

  4. Node.js躬行记(19)——KOA源码分析(上)

    本次分析的KOA版本是2.13.1,它非常轻量,诸如路由.模板等功能默认都不提供,需要自己引入相关的中间件. 源码的目录结构比较简单,主要分为3部分,__tests__,lib和docs,从名称中就可 ...

  5. Node.js躬行记(21)——花10分钟入门Node.js

    Node.js 不是一门语言,而是一个基于 V8 引擎的运行时环境,下图是一张架构图. 由图可知,Node.js 底层除了 JavaScript 代码之外,还有大量的 C/C++ 代码. 常说 Nod ...

  6. Node.js躬行记(1)——Buffer、流和EventEmitter

    一.Buffer Buffer是一种Node的内置类型,不需要通过require()函数额外引入.它能读取和写入二进制数据,常用于解析网络数据流.文件等. 1)创建 通过new关键字初始化Buffer ...

  7. Node.js躬行记(4)——自建前端监控系统

    这套前端监控系统用到的技术栈是:React+MongoDB+Node.js+Koa2.将性能和错误量化.因为自己平时喜欢吃菠萝,所以就取名叫菠萝系统.其实在很早以前就有这个想法,当时已经实现了前端的参 ...

  8. Node.js躬行记(15)——活动规则引擎

    在日常的业务开发中,会包含许多的业务规则,一般就是用if-else硬编码的方式实现,这样就会增加逻辑的维护成本,若无注释,可能都无法理解规则意图. 因为一旦规则有所改变,那么就需要修改代码再发布代码, ...

  9. Node.js躬行记(3)——命令行工具

    一.自定义 创建一个空目录,然后通过npm init命令初始化package.json文件,并按提示输入相关信息或直接回车使用默认信息,生成的内容如下所示. { "name": & ...

随机推荐

  1. 集合遍历数组三种常用方式(Collecton和Map)

    Collection集合遍历数组的三种方式: 迭代器 foreach(增强for循环) JDK1.8之后的新技术Lambda 迭代器: 方法:public Iterator inerator():获取 ...

  2. VS 2019下载、安装与注册包含MF、界面美化和安装Visual Assist

    下载: 1.在搜索框中输入"微软" 2. 3. 安装: 1.双击运行-继续-等待安装完成 2. 3.安装完后,重启电脑,并创建快捷方式. 注册: 1.打开软件 2. 3. 4.网上 ...

  3. Docker系列(26)- 发布镜像到阿里云容器服务

    1.登录阿里云 2.找到容器镜像服务 3.创建命名空间 4.创建镜像仓库 5.上传镜像

  4. div居中和垂直居中的最简单方法

    div居中方法: 1)对父盒子添加 text-align="center": 2)子盒子添加 margin:0 auto; 例子: body{text-align:center} ...

  5. win10环境charles抓包unknow问题

    win10环境,charles已经安装了证书,但是抓包的时候还是unknow,让人头疼. 1.确保证书安装成功. 2.检查charles设置是否正确. 进入Charles - > Proxy - ...

  6. jmeter加密解密(解密篇)

    上一篇已经讲解了公钥加密,这篇讲解公钥解密.解密比较简单,直接操作吧. 需求是:接口中的请求体的部分参数需要先加密再请求,返回的结果中部分字段需解密. 1.在请求下新建beanshell后置处理程序, ...

  7. 鸿蒙内核源码分析(进程概念篇) | 进程在管理哪些资源 | 百篇博客分析OpenHarmony源码 | v24.01

    百篇博客系列篇.本篇为: v24.xx 鸿蒙内核源码分析(进程概念篇) | 进程在管理哪些资源 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁在管理内 ...

  8. P6222-「P6156 简单题」加强版【莫比乌斯反演】

    正题 题目链接:https://www.luogu.com.cn/problem/P6222 题目大意 给出\(k\),\(T\)组询问给出\(n\)求 \[\sum_{i=1}^n\sum_{j=1 ...

  9. 计算机网络-4-2-ARP地址解析协议以及IP数据报不可变组成部分

    地址解析协议ARP ​ 在实际的应用中,我们会经常遇见这样的一个问题:我们已知一个机器(主机或者路由器的),我们怎么获取相应的硬件地址?,地址解析协议就是用来解决这个问题的. ARP协议的作用: 由上 ...

  10. 踩坑系列《四》a标签的href属性拼接问题

    如上所示,无法直接在 html里面的 a 标签的href属性传递参数时,只需要在 JS 中获取对应 a 标签的id,再通过 attr 方法抓到 href,进行字符串拼接即可