题意:

用K*1的砖块去覆盖N*N的大矩形,问最多能覆盖多少块。

详细证明:(转载自matrix67)

Matrix67: The Aha Moments

趣题:用 k × 1 的矩形覆盖 n × n 的正方形棋盘

用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,往往不能实现完全覆盖(比如,有时候 n × n 甚至根本就不是 k 的整倍数)。不过,在众多覆盖方案中,总有一种覆盖方案会让没有覆盖到的方格个数达到最少,我们就用 m(n, k) 来表示这个数目。求证:不管 n 和 k 是多少, m(n, k) 一定是一个完全平方数。

如果 n < k ,那么很明显,棋盘里一个小矩形也放不下,因而 m(n, k) = n2 ,这是一个完全平方数。下面我们就只考虑 n ≥ k 了。

我们先来证明这样一个事实:如果某个覆盖方案当中,仅剩下一个 s × s 的小正方形区域没有覆盖到,其中 s ≤ k / 2 ,那么这样的方案一定是最优的。首先,在棋盘中的每个格子里都填上一个数,使得从最左下角出发,各个对角线上的数依次为 0, 1, 2, …, k – 1, 0, 1, 2, …, k – 1, … (上图所示的是 k = 6 的情况)。那么,把一个 k × 1 的小矩形放在棋盘中的任意位置,它总会覆盖每种数字各一个。假设某个覆盖方案当中,仅剩下一个 s × s 的小正方形区域没有覆盖到。注意到,任意一个 s × s 的小正方形区域里最多只会出现 2s – 1 种不同的数,因此如果 s ≤ k / 2 ,那么这个 s × s 的小正方形区域里一定会缺失至少一种数,比方说 x (在上图中,右上角的那个 3 × 3 的空白区域里就缺数字 5 ,因而我们可以取 x = 5 )。由此可以推出,此时小矩形的数目已经达到了最大值,任何其他覆盖方案都不可能包含更多的小矩形,因为每个小矩形都必然会覆盖到一个 x ,然而在刚才的覆盖方案中,所有的 x 都已经被覆盖到了。

有趣的是,当 n ≥ k 时,让整个棋盘仅剩一个边长不超过 k / 2 的小正方形区域没有覆盖到,这是一定能做到的。不妨把 n 除以 k 的余数记作 r 。如果 r ≤ k / 2 ,那么我们可以直接用横着的小矩形从左向右填充棋盘,再用竖着的小矩形填充余下的部分,最终会剩下 r × r 的小正方形区域。上图所示的就是 n = 22 并且 k = 5 的情况,注意到 22 除以 5 的余数为 2 ,确实小于等于除数 5 的一半。可见,对于这类情况,我们都有 m(n, k) = r2 ,这是一个完全平方数。

如果 r > k / 2 呢?我们可以用和刚才类似的方法填充棋盘,使得棋盘右上角仅剩一个 (r + k) × (r + k) 的正方形区域。然后再用 4r 个小矩形像风车一样填充这个 (r + k) × (r + k) 的区域,使得正中间只剩下一个边长为 k – r 的小正方形区域。由于 k – r < k / 2 ,因而此时的覆盖方案再次达到最优。上图所示的就是 n = 22 并且 k = 6 的情况,注意到 22 除以 6 的余数为 4 ,确实大于除数 6 的一半。可见,对于这类情况,我们有 m(n, k) = (k – r)2 ,这仍然是一个完全平方数。

代码:

int T,n,k;
int main(){
cin>>T;
while(T--){
scanf("%d%d",&n,&k);
if(k>n){
puts("0");
continue;
}
int r=n%k;
if(2*r<=k)
printf("%d\n",n*n-r*r);
else
printf("%d\n",n*n-(k-r)*(k-r));
}
}

hdu 5100 Chessboard (额,,,,,就叫它趣味数学题吧)的更多相关文章

  1. hdu 5100 Chessboard

    http://acm.hdu.edu.cn/showproblem.php?pid=5100 在比赛时没看懂题就没看,结束之后,看了解题报告才知道怎么做. 解题报告: 首先,若n<k,则棋盘连一 ...

  2. HDU 5100 Chessboard 用 k &#215; 1 的矩形覆盖 n &#215; n 的正方形棋盘

    pid=5100">点击打开链接 Chessboard Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32 ...

  3. URAL —— 1255 & HDU 5100——Chessboard ——————【数学规律】

    用 k × 1 的矩形覆盖 n × n 的正方形棋盘 用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,往往不能实现完全覆盖(比如,有时候 n × n 甚至根本就不是 k 的整倍数). 解题 ...

  4. HDU 2414 Chessboard Dance (力模拟)

    主题链接:HDU 2414 Chessboard Dance 意甲冠军:鉴于地图,>,<,^,v的方向,字母相当于是箱子,箱子能够推出边界.人保证不会做出边界.以下输入指令,依照指令走,输 ...

  5. BestCoder17 1001.Chessboard(hdu 5100) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5100 题目意思:有一个 n * n 的棋盘,需要用 k * 1 的瓷砖去覆盖,问最大覆盖面积是多少. ...

  6. hdu 5100 n*n棋盘放k*1长方条最多覆盖面积

    http://acm.hdu.edu.cn/showproblem.php?pid=5100 给一个n*n的棋盘,问用k*1的长方条最多能覆盖多大的面积(k个单位都必须完全覆盖上去) 首先,若n< ...

  7. HDU 5100

    http://acm.hdu.edu.cn/showproblem.php?pid=5100 用1*k方格覆盖n*n方格 有趣的一道题,查了下发现m67的博客还说过这个问题 其实就是两种摆法取个最大值 ...

  8. POJ 3344 &amp; HDU 2414 Chessboard Dance(模拟)

    题目链接: PKU:http://poj.org/problem? id=3344 HDU:http://acm.hdu.edu.cn/showproblem.php?pid=2414 Descrip ...

  9. hdu 最大报销额

    本题也是一个背包的问题,我觉得这道题的核心就是根据精确度将浮点型转化为整型然后利用动态规划进行求解,注意对题意的理解,有3种支票是不能够报销的. 我开始照着这个思路进行思考,但是敲出来的第一个代码居然 ...

随机推荐

  1. HDU1213How Many Tables(基础并查集)

    HDU1213How Many Tables Problem Description Today is Ignatius' birthday. He invites a lot of friends. ...

  2. scrum项目冲刺_day09总结

    摘要:今日完成任务. 1.短信服务完成(由于使用免费的接口,导致部分手机会收到垃圾短信) 2.注册登录完成 3.导航还在进行 总任务: 一.appUI页面(已完成) 二.首页功能: 1.图像识别功能( ...

  3. 【PHP数据结构】二叉树的遍历及逻辑操作

    上篇文章我们讲了许多理论方面的知识,虽说很枯燥,但那些都是我们今天学习的前提,一会看代码的时候你就会发现这些理论知识是多么地重要了.首先,我们还是要说明一下,我们学习的主要内容是二叉树,因为二叉树是最 ...

  4. hadoop生态之面试题篇

    一.hdfs的高可用 1.先说下自己的理解, 正常的hdfs有namenode,datanode,secondnamenode,但是second name node 不是真正意义上的namenode备 ...

  5. MyBatis Plus 批量数据插入功能,yyds!

    最近 Review 小伙伴代码的时候,发现了一个小小的问题,小伙伴竟然在 for 循环中进行了 insert (插入)数据库的操作,这就会导致每次循环时都会进行连接.插入.断开连接的操作,从而导致一定 ...

  6. PYTHON django 关于时间转换

    在安装django.默认会pytz时区库,import pytzpytz.timezone("UTC")now.astimezone("要转换的aware类型" ...

  7. kubectl 的插件管理工具krew

    k8s的命令行工具kubectl 对于玩k8s 的人来说是必备工具.kubectl插件机制在Kubernetes 1.14宣布稳定,进入GA状态.kubectl的插件机制就是希望允许开发者以独立的二进 ...

  8. DBeaver MSSQL 支持TLS设置

    DBeaver是一个基于 Java 开发,免费开源的通用数据库管理和开发工具,使用非常友好的 ASL 协议.可以通过官方网站或者 Github 进行下载. 由于 DBeaver 基于 Java 开发, ...

  9. 14-Java锁的概述

    14-锁的概述 乐观锁与悲观锁 ​ 乐观锁与悲观锁是数据库中引入的名词,但是在并发包里也引入了类似的思想,在这里我们还是有必要需要了解一下. ​ 悲观锁指数据被外界修改持保守态度,认为数据会很容易被其 ...

  10. Bayou复制分布式存储系统

    本文主要参考文献[1]完成. 第1章导读 Bayou是一个复制的.弱一致性的存储系统,用于移动计算环境.为了最大化可用性,Bayou为用户提供了可以任意读写访问的副本.Bayou的设计侧重于为应用程序 ...