ab矩阵(实对称矩阵)
今天在做题时巧遇了很多此类型的矩阵,出于更快解,对此进行学习。(感谢up主线帒杨)
1、认识ab矩阵
形如:主对角线元素都是a,其余元素都是b,我们称之为ab矩阵(默认涉及即为n×n阶)

2、求|A|

证明:
3、求高次幂
将矩阵A拆分成A=λE+B,矩阵B的高次幂 \(B^n\) 运用以下“二项式”公式易得:

一题:


4、秩
一题:【r(A)<n,|A|=0】

5、齐次方程组
一题:

6、特征值与特征向量
结合前面所学的求|A|更快计算|λE-A|,建议收藏本题并注意5:20处的小技巧。
tr(A)= $λ_{1}$ +...+ $λ_{n}$ = $a_{11}$ + $a_{22}$ +...+ $a_{nn}$
7、考研真题
(1)97真题
(2)16真题
定义:If P、Q可逆,PAQ=B ,则A和B等价。【快:r(A)=r(B),则等价】
| $λ_{1}$ 、 $λ_{2}$ 、 $λ_{3}$ 符号 | 二次曲面f( $x_{1}$ , $x_{2}$ , $x_{3}$ )=2形状 |
|---|---|
| 3正(都相等) | 椭球面(球面) |
| 2正1负 | 单叶双曲面 |
| 2正1零(正的相等) | 椭圆柱面(圆柱面) |
| 1正2负 | 双叶双曲面 |
| 1正1负1零 | 双曲柱面 |
tr(A)= $λ_{1}$ +...+ $λ_{n}$ = $a_{11}$ + $a_{22}$ +...+ $a_{nn}$
(3)07真题
相似: \(P^{-1}AP=B\) , 合同: \(P^{T}AP=B\)(P可逆)
判定相似:若A与B有相同特征值且A与B都能相似对角化,则A与B相似
判定合同:(前提:A,B为实对称矩阵)A与B有相同的正、负惯性指数或A与B特征值的正负个数相同
(4)14真题
\(A^{T}=A\) 一定可以对角化
(5)03真题
若A与B相似,A与B有相同的特征值
A可逆,A, \(A^{-1}\) ,\(A^{*}\) 特征向量相同
ab矩阵(实对称矩阵)的更多相关文章
- $A,B$ 实对称 $\ra\tr((AB)^2)\leq \tr(A^2B^2)$
设 $A,B$ 是 $n$ 阶实对称矩阵. 试证: $\tr((AB)^2)\leq \tr(A^2B^2)$. 又问: 等号何时成立? 证明: 由 $$\bex \sum_i \sez{\su ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- Hermite 矩阵及其特征刻画
将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次 ...
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- 矩阵的特征值和特征向量的雅克比算法C/C++实现
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- 矩阵——特征向量(Eigenvector)
原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定 ...
- Moore-Penrose Matrix Inverse 摩尔-彭若斯广义逆 埃尔米特矩阵 Hermitian matrix
http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数.对于只包含实数 ...
- eigen矩阵操作练习
// // Created by qian on 19-7-16. // /* 相机位姿用四元数表示 q = [0.35, 0.2, 0.3, 0.1] x,y,z,w * 注意:输入时Quatern ...
随机推荐
- 使用ECS和OSS搭建个人网盘
体验简介 本场景将提供一台配置了Centos 7.7版本的ECS实例(云服务器)和对象存储OSS实例.通过本教程的操作,您可以基于ECS和OSS快速搭建一个个人网盘. 体验此场景后,可以掌握的知识有: ...
- ms sql 带自增列 带外键约束 数据导入导出
1,生成建表脚本 选中要导的表,点右键-编写表脚本为-create到 ,生成建表脚本 2,建表(在新库),但不建外键关系 不要选中生成外键的那部分代码,只选择建表的代码 3,导数据,用SQL STU ...
- SQLmap的基本命令
Sqlmap sqlmap是一个自动化的SQL注入工具,其主要功能是扫描,发现并利用给定的URL进行SQL注入.目前支持的数据库有MySql.Oracle.Access.PostageSQL.SQL ...
- fiddler抓包工具 https抓取 ios手机端抓取
fiddler抓包工具 https抓取 ios手机端抓取 转载链接:https://www.cnblogs.com/bais/p/9118297.html 抓取pc端https请求,ios手机端 ...
- vm中安装win2012并安装hyper-V不支持嵌套
在虚拟机中安装win2012,并安装hyper-v提示: 无法安装hyper-v:虚拟机监控程序已经在运行 找到虚拟机目录下,用文本编辑器打开该系统的虚拟机配置文件(.vmx后缀),在配置文件末尾增加 ...
- Elasticsearch、XXLJob以及最近的学习记录
Elasticsearch.XXLJob以及最近的学习记录 前言 在这九月的最后一周,来总结一下最近的学习记录,主要是对于Elasticsearch.XXLjob的初步学习,想着还是多记录点,以便后面 ...
- CF1119H-Triple【FWT】
正题 题目链接:https://www.luogu.com.cn/problem/CF1119H 题目大意 \(n\)个可重集,第\(i\)个里有\(x\)个\(a_i\),\(y\)个\(b_i\) ...
- 基于深度学习的建筑能耗预测01——Anaconda3-4.4.0+Tensorflow1.7+Python3.6+Pycharm安装
基于深度学习的建筑能耗预测-2021WS-02W 一,安装python及其环境的设置 (写python代码前,在电脑上安装相关必备的软件的过程称为环境搭建) · 完全可以先安装anaconda(会自带 ...
- TCP协议基本概念
TCP协议最主要的特点 TCP是面向连接的运输层协议.这就是说,应用程序在使用TCP协议之前,必须要建立TCP连接,且在传输完毕后,还要断开连接. 每一条TCP连接只能有两个端点,每一条TCP连接只能 ...
- MySQL学习总结:提问式回顾 undo log 相关知识
原文链接:MySQL学习总结:提问式回顾 undo log 相关知识 1.redo 日志支持恢复重做,那么如果是回滚事务中的操作呢,也会有什么日志支持么? 也回滚已有操作,那么就是想撤销,对应的有撤销 ...