ab矩阵(实对称矩阵)
今天在做题时巧遇了很多此类型的矩阵,出于更快解,对此进行学习。(感谢up主线帒杨)
1、认识ab矩阵
形如:主对角线元素都是a,其余元素都是b,我们称之为ab矩阵(默认涉及即为n×n阶)

2、求|A|

证明:
3、求高次幂
将矩阵A拆分成A=λE+B,矩阵B的高次幂 \(B^n\) 运用以下“二项式”公式易得:

一题:


4、秩
一题:【r(A)<n,|A|=0】

5、齐次方程组
一题:

6、特征值与特征向量
结合前面所学的求|A|更快计算|λE-A|,建议收藏本题并注意5:20处的小技巧。
tr(A)= $λ_{1}$ +...+ $λ_{n}$ = $a_{11}$ + $a_{22}$ +...+ $a_{nn}$
7、考研真题
(1)97真题
(2)16真题
定义:If P、Q可逆,PAQ=B ,则A和B等价。【快:r(A)=r(B),则等价】
| $λ_{1}$ 、 $λ_{2}$ 、 $λ_{3}$ 符号 | 二次曲面f( $x_{1}$ , $x_{2}$ , $x_{3}$ )=2形状 |
|---|---|
| 3正(都相等) | 椭球面(球面) |
| 2正1负 | 单叶双曲面 |
| 2正1零(正的相等) | 椭圆柱面(圆柱面) |
| 1正2负 | 双叶双曲面 |
| 1正1负1零 | 双曲柱面 |
tr(A)= $λ_{1}$ +...+ $λ_{n}$ = $a_{11}$ + $a_{22}$ +...+ $a_{nn}$
(3)07真题
相似: \(P^{-1}AP=B\) , 合同: \(P^{T}AP=B\)(P可逆)
判定相似:若A与B有相同特征值且A与B都能相似对角化,则A与B相似
判定合同:(前提:A,B为实对称矩阵)A与B有相同的正、负惯性指数或A与B特征值的正负个数相同
(4)14真题
\(A^{T}=A\) 一定可以对角化
(5)03真题
若A与B相似,A与B有相同的特征值
A可逆,A, \(A^{-1}\) ,\(A^{*}\) 特征向量相同
ab矩阵(实对称矩阵)的更多相关文章
- $A,B$ 实对称 $\ra\tr((AB)^2)\leq \tr(A^2B^2)$
设 $A,B$ 是 $n$ 阶实对称矩阵. 试证: $\tr((AB)^2)\leq \tr(A^2B^2)$. 又问: 等号何时成立? 证明: 由 $$\bex \sum_i \sez{\su ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- Hermite 矩阵及其特征刻画
将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次 ...
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- 矩阵的特征值和特征向量的雅克比算法C/C++实现
矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...
- Hessian矩阵与多元函数极值
Hessian矩阵与多元函数极值 海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵.虽然它是一个具有悠久历史的数学成果.可是在机器学习和图像处理(比如SI ...
- 矩阵——特征向量(Eigenvector)
原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定 ...
- Moore-Penrose Matrix Inverse 摩尔-彭若斯广义逆 埃尔米特矩阵 Hermitian matrix
http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html 显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数.对于只包含实数 ...
- eigen矩阵操作练习
// // Created by qian on 19-7-16. // /* 相机位姿用四元数表示 q = [0.35, 0.2, 0.3, 0.1] x,y,z,w * 注意:输入时Quatern ...
随机推荐
- Request 获取根据页面获取用户输入判断登陆成功或者失败
import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.serv ...
- 简单操作:10分钟实现在kubernetes(k8s)里面部署服务器集群并访问项目(docker三)
前言 经过docker安装.k8s开启并登录,我们终于到 "部署k8s服务器集群并访问项目" 这一步了,实现的过程中有太多坑,好在都填平了,普天同庆. 在进行当前课题之前,我们需要 ...
- 基于Tensorflow + Opencv 实现CNN自定义图像分类
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...
- PHPMailer实现发送邮件的方法介绍
来自: https://www.php.cn/php-weizijiaocheng-408762.html PHPmailer请在github下载,或者直接百度,也不难,虽然PHPmailer里面一大 ...
- web 阶段的一些简答题
1.jsp 9个隐含对象 2. jsp 4大域对象 3.mybatis 中 #{} %{ } 的区别于联系 4. Servlet容器默认是采用单实例多线程的方式处理多个请求的: 5.Cookie 与S ...
- layui 添加复选框checkbox后,无法正确显示及点击的方法
layui 添加复选框checkbox后,无法正确显示方式,这个是由于html里的样式添加 layui-form后,没有加载 form插件 ,具体如下: <body style="ba ...
- 如何一次性add library to classpath
前言:导入项目时,时常需要手动导包,提示"add library to classpath",需要一个个找报红的类 点击添加本地项目包
- Python3入门系列之-----函数
什么是函数 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可以自己 ...
- Ubuntu解决安装没有候选
Ubuntu解决安装没有候选 很多初次上手的小白们最头疼的可能就是一下这种问题了 这是我也载过很多次的坑,原因是软件安装源的问题,需要去软件安装设置里更改合适的源 结局方案如下:(具体操作) 有个So ...
- netty系列之:使用netty搭建websocket客户端
目录 简介 浏览器客户端 netty对websocket客户端的支持 WebSocketClientHandshaker WebSocketClientCompressionHandler netty ...