机器学习:数据预处理之独热编码(One-Hot)

前言

————————————————————————————————————————

在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。
这些特征值并不是连续的,而是离散的,无序的。通常我们需要对其进行特征数字化。

那什么是特征数字化呢?例子如下:

  • 性别特征:["男","女"]

  • 祖国特征:["中国","美国,"法国"]

  • 运动特征:["足球","篮球","羽毛球","乒乓球"]

假如某个样本(某个人),他的特征是这样的["男","中国","乒乓球"],我们可以用 [0,0,4] 来表示,但是这样的特征处理并不能直接放入机器学习算法中。因为类别之间是无序的(运动数据就是任意排序的)。

什么是独热编码(One-Hot)?

————————————————————————————————————————

One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。

One-Hot实际案例

————————————————————————————————————————

就拿上面的例子来说吧,性别特征:["男","女"],按照N位状态寄存器来对N个状态进行编码的原理,咱们处理后应该是这样的(这里只有两个特征,所以N=2):

男  =>  10

女  =>  01

祖国特征:["中国","美国,"法国"](这里N=3):

中国  =>  100

美国  =>  010

法国  =>  001

运动特征:["足球","篮球","羽毛球","乒乓球"](这里N=4):

足球  =>  1000

篮球  =>  0100

羽毛球  =>  0010

乒乓球  =>  0001

所以,当一个样本为["男","中国","乒乓球"]的时候,完整的特征数字化的结果为:

[1,0,1,0,0,0,0,0,1]

下图可能会更好理解:

One-Hot在python中的使用

————————————————————————————————————————

1
2
3
4
5
6
7
8
from sklearn import preprocessing  
   
enc = preprocessing.OneHotEncoder()  
enc.fit([[0,0,3],[1,1,0],[0,2,1],[1,0,2]])  #这里一共有4个数据,3种特征
   
array = enc.transform([[0,1,3]]).toarray()  #这里使用一个新的数据来测试
   
print array   # [[ 1  0  0  1  0  0  0  0  1]]

结果为 1 0 0 1 0 0 0 0 1

为什么使用one-hot编码来处理离散型特征?

————————————————————————————————————————

在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

而我们使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。

将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。

比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值,不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。那么x_1和x_3工作之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。那如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个工作之间的距离就都是sqrt(2).即每两个工作之间的距离是一样的,显得更合理。

不需要使用one-hot编码来处理的情况

————————————————————————————————————————

将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。

比如,该离散特征共有1000个取值,我们分成两组,分别是400和600,两个小组之间的距离有合适的定义,组内的距离也有合适的定义,那就没必要用one-hot 编码。

离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

One-Hot编码(转)的更多相关文章

  1. Python编码记录

    字节流和字符串 当使用Python定义一个字符串时,实际会存储一个字节串: "abc"--[97][98][99] python2.x默认会把所有的字符串当做ASCII码来对待,但 ...

  2. URL安全的Base64编码

    Base64编码可用于在HTTP环境下传递较长的标识信息.在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式.此时,采用Base64编码不仅比较简短,同时也具有不可 ...

  3. myeclipse学习总结一(在MyEclipse中设置生成jsp页面时默认编码为utf-8编码)

    1.每次我们在MyEclispe中创建Jsp页面,生成的Jsp页面的默认编码是"ISO-8859-1".在这种情况下,当我们在页面中编写的内容存在中文的时候,就无法进行保存.如下图 ...

  4. Base64编码

    Base64编码 写在前面 今天在做一个Android app时遇到了一个问题:Android端采用ASE对称加密的数据在JavaWeb(jre1.8.0_7)后台解密时,居然解密失败了!经过测试后发 ...

  5. 使用etree.HTML的编码问题

    title: 使用etree.HTML的编码问题 date: 2015-10-07 17:56:47 categories: [Python] tags: [Python, lxml, Xpath] ...

  6. 前端学HTTP之实体和编码

    前面的话 每天都有各种媒体对象经由HTTP传送,如图像.文本.影片以及软件程序等.HTTP要确保它的报文被正确传送,识别.提取以及适当处理.为了实现这些目标,HTTP使用了完善的标签来描述承载内容的实 ...

  7. Android数据加密之Base64编码算法

    前言: 前面学习总结了平时开发中遇见的各种数据加密方式,最终都会对加密后的二进制数据进行Base64编码,起到一种二次加密的效果,其实呢Base64从严格意义上来说的话不是一种加密算法,而是一种编码算 ...

  8. iOS 原生地图地理编码与反地理编码

    当我们要在App实现功能:输入地名,编码为经纬度,实现导航功能. 那么,我需要用到原生地图中的地理编码功能,而在Core Location中主要包含了定位.地理编码(包括反编码)功能. 在文件中导入 ...

  9. 软件工程(C编码实践篇)学习心得

    孟繁琛 + 原创作品转载请注明出处 + <软件工程(C编码实践篇)>MOOC课程 http://mooc.study.163.com/course/USTC-1000002006 软件工程 ...

  10. cmd窗口编码设置

    问题描述:不知道误操作了什么,导致cmd窗口的鼠标显示位置出现错位,如下: 现在要将鼠标位置调整回来. 使用工具:cmd. 操作步骤: 1.查看cmd属性可以看到 可以看到是UTF-8编码格式的,我们 ...

随机推荐

  1. POJ 1927 Area in Triangle 题解

    link Description 给出三角形三边长,给出绳长,问绳在三角形内能围成的最大面积.保证绳长 \(\le\) 三角形周长. Solution 首先我们得知道,三角形的内切圆半径就是三角形面积 ...

  2. bind方法源码

    'use strict'; module.exports = function bind(fn, thisArg) { return function wrap() { var args = new ...

  3. 抽签小程序(C语言随机数)

    最近班级里需要人员抽签参加活动,闲来无事用java的(Math.random()方法||java.util.Random())写了一个随机抽签的,所以我又了解了一下C语言的随机数获取. C语言的随机数 ...

  4. Linux开机显示模式切换

    修改vim /etc/inittab 默认为5-图形界面模式,改为3-多用户模式即可 # Default runlevel. The runlevels used are: # 0 - halt (D ...

  5. js Object.prototype.hasOwnProperty() 与 for in 区别

    hasOwnProperty() 方法会返回一个布尔值,指示对象自身属性中是否具有指定的属性 语法 obj.hasOwnProperty(prop) 参数 prop要检测的属性 [字符串] 名称或者 ...

  6. k8s实战之部署Prometheus+Grafana可视化监控告警平台

    写在前面 之前部署web网站的时候,架构图中有一环节是监控部分,并且搭建一套有效的监控平台对于运维来说非常之重要,只有这样才能更有效率的保证我们的服务器和服务的稳定运行,常见的开源监控软件有好几种,如 ...

  7. JSP页面 CTRL+F 功能实现

    .res { color: rgba(255, 0, 0, 1) } .result { background: rgba(255, 255, 0, 1) } --- js 部分 var oldKey ...

  8. 【第十八期】分享一个网易go面经

    自我介绍 未来的主要方向 介绍下之前的项目用到的优化点.难点 为什么不要大量使用goroutine gpm模型 go里面goroutine创建数量有限制吗? 线程和协程有什么区别 golang支持哪些 ...

  9. Appium链接夜神模拟器

    参考官方技术文档: http://appium.io/slate/cn/master/ 确保已经安装jdk和adt adb需要配置系统环境变量: D:\adt-bundle-windows-x86_6 ...

  10. opencv笔记--Active contours

    Active Contours 也称作 Snake,通过定义封闭区域曲线的能量函数,并使其最小化得到最终曲线. Active Contours 被用作物体边界精确定位上,opencv 给出了一个实现, ...