Generating Adversarial Examples with Adversarial Networks
@article{xiao2018generating,
title={Generating Adversarial Examples with Adversarial Networks},
author={Xiao, Chaowei and Li, Bo and Zhu, Junyan and He, Warren and Liu, Mingyan and Song, Dawn},
journal={arXiv: Cryptography and Security},
year={2018}}
概
本文利用GAN生成adversarial samples.
主要内容
其中\(\mathcal{G}\)是生成器, \(\mathcal{D}\)是用于判别真假的判别器, 二者都是需要训练的, 而\(f\)是已知的我们需要攻击的模型(在white-box下是不需要训练的).
训练判别器很普通的GAN是类似的, 即最大化下式:
\mathcal{L}_{GAN} = \mathbb{E}_{x} \log \mathcal{D}(x) + \mathbb{E}_{x} \log (1-\mathcal{D}(x+\mathcal{G}(x))).
\]
训练生成器, 除了\(\mathcal{L}_{GAN}\), 还需要
\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f (x+\mathcal{G}(x),t),
\]
其中\(t\)是我们所需要的攻击目标(注意这里通过对\(\ell\)的一些额外的选择, 是可以用到untargeted attack的).
\mathcal{L}_{hinge} = \mathbb{E}_x \max (0, \|\mathcal{G}(x)\|_2 -c),
\]
显然(3)是保证摄动不要太大.
所以训练生成器是最小化
\mathcal{L}=\mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]
black-box 拓展
该方法可以拓展到black-box上, 假设\(b(x)\)是目标网络, 其结构和训练数据都是未知的, 此时我们构建一个替代网络\(f(x)\)用于逼近\(b(x)\). 利用交替训练, 更新生成器\(\mathcal{G}\)和\(f\).
- 固定\(f_{i-1}\), 更新\(\mathcal{G}_i\): \(\mathcal{G}_i\)初始化参数为\(\mathcal{G}_{i-1}\), 则
\]
- 固定\(\mathcal{G}_i\), 更新\(f_i\): 初始化\(f_i\)的参数为\(f_{i-1}\), 则
\]
其中\(\mathcal{H}\)表示交叉熵损失.
Generating Adversarial Examples with Adversarial Networks的更多相关文章
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages
Generating Fluent Adversarial Examples for Natural Languages ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...
- 《Explaining and harnessing adversarial examples》 论文学习报告
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020-03-27 1 背景 Sz ...
- EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
目录 概 主要内容 从线性谈起 非线性 Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
- 文本adversarial examples
对文本对抗性样本的研究极少,近期论文归纳如下: 文本对抗三个难点: text data是离散数据,multimedia data是连续数据,样本空间不一样: 对text data的改动可能导致数据不合 ...
- Limitations of the Lipschitz constant as a defense against adversarial examples
目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...
- Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验 ...
随机推荐
- Vue2全家桶+Element搭建的PC端在线音乐网站
目录 1,前言 2,已有功能 3,使用 4,目录结构 5,页面效果 登录页 首页 排行榜 歌单列表 歌单详情 歌手列表 歌手详情 MV列表 MV详情 搜索页 播放器 1,前言 项目基于Vue2全家桶及 ...
- 为构建大型复杂系统而生的微服务框架 Erda Infra
作者|宋瑞国(尘醉) 来源|尔达 Erda 公众号 导读:Erda Infra 微服务框架是从 Erda 项目演进而来,并且完全开源.Erda 基于 Erda Infra 框架完成了大型复杂项目的 ...
- 大数据学习day13------第三阶段----scala01-----函数式编程。scala以及IDEA的安装,变量的定义,条件表达式,for循环(守卫模式,推导式,可变参数以及三种遍历方式),方法定义,数组以及集合(可变和非可变),数组中常用的方法
具体见第三阶段scala-day01中的文档(scala编程基础---基础语法) 1. 函数式编程(https://www.cnblogs.com/wchukai/p/5651185.html): ...
- Ganglia 简单介绍与安装
文章来至于 http://sachinsharm.wordpress.com/2013/08/17/setup-and-configure-ganglia-3-6-on-centosrhel-6- ...
- STL学习笔记1
STL六大部件 容器.分配器.算法.迭代器.适配器.仿函数 他们的关系如下
- mybatis-plus解析
mybatis-plus当用lambda时bean属性不要以is/get/set开头,解析根据字段而不是get/set方法映射
- I/O流之字节流
在程序中所有的数据都是以流的形式进行传输或保存的,程序需要数据时要使用输入流读取数据,而当程序需要将一些数据保存起来时,就要使用输出流完成对于操作文件内容,要进行文件内容的操作就需要通过Java提供的 ...
- python使用gitlab-api
目录 一.简介 二.示例 讲解 配置文件方式存储token 其它返回 三.其它操作 一.简介 公司使用gitlab 来托管代码,日常代码merge request以及其他管理是交给测试,鉴于操作需经常 ...
- Matalb 正则表达式预处理数据(一)
clc clear %% Step 1: 读入数据 phasedata = readtable('phasedata.txt'); %% Step 2: 提取数据 time = phasedata(: ...
- 使用bochs调试汇编程序
使用bochs调试汇编程序 前面我们已经搭建好了bochs的环境,并且将我们的汇编程序写入了硬盘里面,现在我们来看看如何通过bochs来调试我们的程序. 前文:https://www.cnblogs. ...