Generating Adversarial Examples with Adversarial Networks
@article{xiao2018generating,
title={Generating Adversarial Examples with Adversarial Networks},
author={Xiao, Chaowei and Li, Bo and Zhu, Junyan and He, Warren and Liu, Mingyan and Song, Dawn},
journal={arXiv: Cryptography and Security},
year={2018}}
概
本文利用GAN生成adversarial samples.
主要内容
其中\(\mathcal{G}\)是生成器, \(\mathcal{D}\)是用于判别真假的判别器, 二者都是需要训练的, 而\(f\)是已知的我们需要攻击的模型(在white-box下是不需要训练的).
训练判别器很普通的GAN是类似的, 即最大化下式:
\mathcal{L}_{GAN} = \mathbb{E}_{x} \log \mathcal{D}(x) + \mathbb{E}_{x} \log (1-\mathcal{D}(x+\mathcal{G}(x))).
\]
训练生成器, 除了\(\mathcal{L}_{GAN}\), 还需要
\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f (x+\mathcal{G}(x),t),
\]
其中\(t\)是我们所需要的攻击目标(注意这里通过对\(\ell\)的一些额外的选择, 是可以用到untargeted attack的).
\mathcal{L}_{hinge} = \mathbb{E}_x \max (0, \|\mathcal{G}(x)\|_2 -c),
\]
显然(3)是保证摄动不要太大.
所以训练生成器是最小化
\mathcal{L}=\mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]
black-box 拓展
该方法可以拓展到black-box上, 假设\(b(x)\)是目标网络, 其结构和训练数据都是未知的, 此时我们构建一个替代网络\(f(x)\)用于逼近\(b(x)\). 利用交替训练, 更新生成器\(\mathcal{G}\)和\(f\).
- 固定\(f_{i-1}\), 更新\(\mathcal{G}_i\): \(\mathcal{G}_i\)初始化参数为\(\mathcal{G}_{i-1}\), 则
\]
- 固定\(\mathcal{G}_i\), 更新\(f_i\): 初始化\(f_i\)的参数为\(f_{i-1}\), 则
\]
其中\(\mathcal{H}\)表示交叉熵损失.
Generating Adversarial Examples with Adversarial Networks的更多相关文章
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training
(没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...
- 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages
Generating Fluent Adversarial Examples for Natural Languages ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...
- 《Explaining and harnessing adversarial examples》 论文学习报告
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020-03-27 1 背景 Sz ...
- EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
目录 概 主要内容 从线性谈起 非线性 Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
- 文本adversarial examples
对文本对抗性样本的研究极少,近期论文归纳如下: 文本对抗三个难点: text data是离散数据,multimedia data是连续数据,样本空间不一样: 对text data的改动可能导致数据不合 ...
- Limitations of the Lipschitz constant as a defense against adversarial examples
目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...
- Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验 ...
随机推荐
- 学习java 7.8
学习内容: 被static修饰的不需要创建对象,直接用类名引用即可 内部类访问特点:内部类可以直接访问外部类的成员,包括私有 外部类访问内部类的成员,必须创建对象 成员内部类,内部类为私有,Outer ...
- nuxt.js相关随笔
对于nuxt.js从未接触,对于项目需要进行零散了解,作此归纳,以下都是一个新手的拙见与理解,有不同意见欢迎提出,但请勿喷. 一.项目创建 npx create-nuxt-app projectNam ...
- E: Unable to fetch some archives, maybe run apt-get update or try with --fix-missing
解决办法:apt-get update或者apt-get cleanapt-get update 或者 apt-get update --fix-missing问题解析1 source本身的问题 根据 ...
- java9 模块化 jigsaw
java9并没有在语言层面做出很多改变,而是致力于一些新特性,如模块化,其核心就是解决历史遗留问题,为以后的jar包森林理清道路.模块化是一个很大的命题,就不讲那么细致了,关于java9的特性也有很多 ...
- 位运算符在JS中的妙用
正文 位运算 JavaScript 中最臭名昭著的 Bug 就是 0.1 + 0.2 !== 0.3,因为精度的问题,导致所有的浮点运算都是不安全的,具体原因可详见<0.1 + 0.2不等于0. ...
- linux shell中的条件判断语句
http://bbs.chinaunix.net/thread-396805-1-1.html shell 判断语句 流程控制 "if" 表达式 如果条件为真则执行then后面的部 ...
- java网站架构设计
涉及到的技术及工具:java,springmvc,ibatis,freemarker,mysql,mongdb,memcached,ehcache,maven. 一个网站不可能说一开始就是要设计一个能 ...
- Android获取通知栏的高度
1 public static int getStatusBarHeight(Context context){ 2 Class<?> c = null; 3 ...
- Mysql多字段模糊查询
MySQL同一字段多值模糊查询 一. 同一字段多值模糊查询,使用多个or进行链接,效率不高,但没有更好的解决方案.(有看到CHARINDEX 关键字,可查询结果并不是模糊,举个栗子 例如SELECT ...
- awk统计命令(求和、求平均、求最大值、求最小值)
本节内容:awk统计命令 1.求和 cat data|awk '{sum+=$1} END {print "Sum = ", sum}' 2.求平均 cat data|awk '{ ...