Xiao C, Li B, Zhu J, et al. Generating Adversarial Examples with Adversarial Networks[J]. arXiv: Cryptography and Security, 2018.

@article{xiao2018generating,

title={Generating Adversarial Examples with Adversarial Networks},

author={Xiao, Chaowei and Li, Bo and Zhu, Junyan and He, Warren and Liu, Mingyan and Song, Dawn},

journal={arXiv: Cryptography and Security},

year={2018}}

本文利用GAN生成adversarial samples.

主要内容

其中\(\mathcal{G}\)是生成器, \(\mathcal{D}\)是用于判别真假的判别器, 二者都是需要训练的, 而\(f\)是已知的我们需要攻击的模型(在white-box下是不需要训练的).

训练判别器很普通的GAN是类似的, 即最大化下式:

\[\tag{1}
\mathcal{L}_{GAN} = \mathbb{E}_{x} \log \mathcal{D}(x) + \mathbb{E}_{x} \log (1-\mathcal{D}(x+\mathcal{G}(x))).
\]

训练生成器, 除了\(\mathcal{L}_{GAN}\), 还需要

\[\tag{2}
\mathcal{L}_{adv}^f = \mathbb{E}_x \ell_f (x+\mathcal{G}(x),t),
\]

其中\(t\)是我们所需要的攻击目标(注意这里通过对\(\ell\)的一些额外的选择, 是可以用到untargeted attack的).

\[\tag{3}
\mathcal{L}_{hinge} = \mathbb{E}_x \max (0, \|\mathcal{G}(x)\|_2 -c),
\]

显然(3)是保证摄动不要太大.

所以训练生成器是最小化

\[\tag{4}
\mathcal{L}=\mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]

black-box 拓展

该方法可以拓展到black-box上, 假设\(b(x)\)是目标网络, 其结构和训练数据都是未知的, 此时我们构建一个替代网络\(f(x)\)用于逼近\(b(x)\). 利用交替训练, 更新生成器\(\mathcal{G}\)和\(f\).

  1. 固定\(f_{i-1}\), 更新\(\mathcal{G}_i\): \(\mathcal{G}_i\)初始化参数为\(\mathcal{G}_{i-1}\), 则
\[\mathcal{G}_i, \mathcal{D}_i = \arg \min _{\mathcal{G}} \max_{\mathcal{D}} \mathcal{L}_{adv}^f+ \alpha \mathcal{L}_{GAN} + \beta \mathcal{L}_{hinge}.
\]
  1. 固定\(\mathcal{G}_i\), 更新\(f_i\): 初始化\(f_i\)的参数为\(f_{i-1}\), 则
\[f_i=\arg \min_f \mathbb{E}_x \mathcal{H} (f(x), b(x)) + \mathbb{E}_x \mathcal{H} (f(x+\mathcal{G}_i(x)), b(x+\mathcal{G}_i(x))).
\]

其中\(\mathcal{H}\)表示交叉熵损失.

Generating Adversarial Examples with Adversarial Networks的更多相关文章

  1. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training 听课笔记

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  2. cs231n spring 2017 lecture16 Adversarial Examples and Adversarial Training

    (没太听明白,以后再听) 1. 如何欺骗神经网络? 这部分研究最开始是想探究神经网络到底是如何工作的.结果人们意外的发现,可以只改变原图一点点,人眼根本看不出变化,但是神经网络会给出完全不同的答案.比 ...

  3. 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages

    Generating Fluent Adversarial Examples for Natural Languages   ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...

  4. 《Explaining and harnessing adversarial examples》 论文学习报告

    <Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Sz ...

  5. EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES

    目录 概 主要内容 从线性谈起 非线性 Goodfellow I, Shlens J, Szegedy C, et al. Explaining and Harnessing Adversarial ...

  6. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

  7. 文本adversarial examples

    对文本对抗性样本的研究极少,近期论文归纳如下: 文本对抗三个难点: text data是离散数据,multimedia data是连续数据,样本空间不一样: 对text data的改动可能导致数据不合 ...

  8. Limitations of the Lipschitz constant as a defense against adversarial examples

    目录 概 主要内容 Huster T., Chiang C. J. and Chadha R. Limitations of the lipschitz constant as a defense a ...

  9. Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples

    Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 目录 概 主要内容 实验 ...

随机推荐

  1. acquire, acre, across

    acquire An acquired taste is an appreciation [鉴赏] for something unlikely to be enjoyed by a person w ...

  2. applogs流量数据项目学习

    一. 项目介绍 项目的功能主要是面向App开发商提供App使用情况的统计服务 主要是基于用户启动app的统计分析,app只要启动就会上报一条日志记录 (启动日志),当然也会有其他的日志比如说页面访问日 ...

  3. Hive(七)【内置函数】

    目录 一.系统内置函数 1.查看系统自带内置函数 2.查看函数的具体用法 二.常用内置函数 1.数学函数 round 2.字符函数 split concat concat_ws lower,upper ...

  4. 零基础学习java------day27-28---------电影评分数据案例,. RPC案例

    一.  电影评分数据案例 movie:电影id rate:用户评分 timeStamp:评分时间 uid:用户id 简化数据: 需求: (1)每个用户评分最高的3部电影 (2)每个用户评分的平均值 ( ...

  5. 打破砂锅问到底!HTTP和HTTPS详解

    HTTP 引自维基百科HTTP:超文本传输协议(英文:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式.协作式和超媒体信息系统的应用层协议.HTTP是万维网的数 ...

  6. Vue框架,computed和watch的区别

    computed和watch定义 1.computed是计算属性,类似于过滤器,对绑定到视图的数据进行处理.官网的例子: <div id="example"> < ...

  7. 【编程思想】【设计模式】【行为模式Behavioral】registry

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/registry.py #!/usr/bin/env py ...

  8. Turbine使用

    一.简介 Turbine是聚合服务器发送事件流数据的一个工具,Hystrix的监控中,只能监控单个节点,实际生产中都为集群,因此可以通过Turbine来监控集群下Hystrix的metrics情况 T ...

  9. 【Java】【学习】【监听器】Listener的学习的案例(窗体程序)

    JavaWeb 监听器listener 学习与简单应用 Java窗体程序使用监听器 效果:点击按钮,控制台出现文字 代码如下 import javax.swing.*; import java.awt ...

  10. 【Git】【Gitee】通过git远程删除仓库文件

    安装Git Git安装配置-菜鸟教程 没有安装下载的,请读者自行安装下载. 启动与初步配置 配置用户名与邮箱 git config --global user.name "用户名" ...