FP增长算法
Apriori原理:如果某个项集是频繁的,那么它的所有子集都是频繁的。
Apriori算法:
1 输入支持度阈值t和数据集
2 生成含有K个元素的项集的候选集(K初始为1)
3 对候选集每个项集,判断是否为数据集中某条记录的子集
4 如果是:增加候选集的计数
5 保留频繁集(计数>t)
6 根据频繁集生成含有K+1个元素的项集候选集
7 循环2-5,直至候选集为空
Apriori算法是有缺点的
缺点是:1.需要多次扫描数据库 2.产生大量的候选频繁集 3.时间和空间复杂度高。
从算法第3步可以看出,候选频繁项集不一定是原始数据集中某一项的子集,即:x为频繁项,y为频繁项,{x,y}可以组成一个候选频繁项集,但是原始数据集中不一定存在{x,y}的组合。这使得Apriori算法有大量时间浪费在无效的集合上。
FP树增长算法是一种挖掘频繁项集的算法。Apriori算法虽然简单易实现,效果也不错,但是需要频繁地扫描数据集,IO费用很大。FP树增长算法有效地解决了这一问题,其通过两次扫描数据集构建FP树,然后通过FP树挖掘频繁项集。
背景知识
1.什么是项和项集?
比如我们在购物的时候,购物车内的每一件商品成为一项,若干个项的集合成为项集。例如{啤酒,尿布}成为一个二元项集。
2.什么是支持度?
支持度是在所有的项集中{X,Y}出现的可能性。
例如:购买商品的数据是(表示4条购物信息):
①{啤酒,尿布,娃哈哈}
②{啤酒,方便面}
③{尿布,奶粉}
④{啤酒,尿布,洗发水}
在这组数据中,{啤酒,尿布}出现的可能性就是这里面数据的概率。{啤酒,尿布}的支持度是2/4=50%.
{尿布,奶粉}的支持度是1/4=25%
3.什么是频繁项集?
我们首先设置一个最小阈值A,支持度大于A的项集就是频繁项集,小于A的项集被剔除。
比如 我们设置阈值为30%,在上面的例子中{啤酒,尿布}就是频繁项集,{尿布,奶粉}就要被剔除。
问题:如何求出频繁项集?
首先构造FP树
然后通过FP树可以求出频繁项集
FP算法
FP增长算法需要根据数据集生成FP树,步骤如下:
步骤一:统计每个元素出现次数,保留频繁元素(假设次数>3),按照元素出 现次数降序排序。
其中h,j,p,w,v,u,n,o,q,p,e,m的次数是小于等于3的.因此把它们去掉,然后把其他的字母按照次数从大到小排列。
步骤二:构建FP树
通过上面的序列按照每一行进入树根初始化树叶。如果没有相同的字母就重新创建叶子节点,每个叶子节点有字母其次数。
如图所示
先插入(z,r),再插入(z,x,y,s,t),再插入(z),如图
最后插完的结果是:
步骤三:FP树中找到元素的前缀路径
以r为例,r的前缀路径为:以根结点为起点,结点r为终点的所有路径。
先找到FP树中所有“r”结点,然后从每一个“r”结点向根结点方向查找,找到的所有路径就是“r”的前缀路径
然而,找到所有“r”结点,需要遍历整棵FP树,这使得算法的时间复杂度会很高。
为了方便查找,可以用链表来加快寻找的前缀路径。
将FP树中所有相同的结点用链表连接,可以将查找结点的时间复杂度从O(n)降到常数级。
通过上面的操作就得到了如下所示的信息。
步骤四:根据前缀路径构造条件FP树
t的条件FP树如下:
t前缀路径中的频繁元素包括{z:3,x:3,y:3},这个数字表示对应的元素在原始数据集中和t一起出现的次数,如{z,t}出现3次,{x,t}出现3次,{y,t}出现3次。显然,这些项集都是频繁项集。
很容易发现,t的前缀路径也是一个数据集,生成t条件FP树的过程,跟前面生成FP树的过程相同,我们也可以在t的条件FP树基础上构造x的条件FP树,对应的就是{t,x}的条件FP树。
显然,这是个递归的过程。
步骤5:递归构造下一层条件FP树,直至条件FP树为空.
总结:
1、频繁集不是从FP树产生,而是通过每一层递归获得的频繁元素组合产生。FP树的作用是寻找前缀路径。
相比于Apriori算法,FP树的作用相当于是把遍历数据集的结果用树的结构保存下来,而避免了重复扫描数据集。
2、FP树只需要扫描两次数据集,第一次统计各个元素出现次数,第二次根据过滤排序后的数据集生成FP树。后续的过程都在FP树上进行。
3、{x,t}的条件FP树和{t,x}的条件FP树是否相同? 算法是否重复计算了这两个条件FP树?
这个问题涉及到FP增长算法的一个根本问题,为什么要使用前缀路径?
找到前缀路径后,需要对前缀路径集合进行过滤和排序,获得下一层递归的数据集。
那么不使用前缀路径,而使用完整路径显然也可以达到目的。
前缀路径有个非常重要的优点。
构造FP树之前由于对元素进行了排序,如果x出现在t的前缀路径中,那么t不可能再出现在x的前缀路径中,所以使用前缀路径避免了相同集合的重复计算!
另外,前缀路径的查找非常方便,一个结点向上查找,获得的前缀路径是固定的,如果使用完整路径,结点向下查找可能会出现分叉,处理起来会变得非常复杂。
FP增长算法的更多相关文章
- Frequent Pattern 挖掘之二(FP Growth算法)(转)
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结 ...
- FP—Growth算法
FP_growth算法是韩家炜老师在2000年提出的关联分析算法,该算法和Apriori算法最大的不同有两点: 第一,不产生候选集,第二,只需要两次遍历数据库,大大提高了效率,用31646条测试记录, ...
- 关联规则算法之FP growth算法
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达到这样的效果,它采用了一种简洁的数据结 ...
- FP Tree算法原理总结
在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题,FP Tree算法(也称F ...
- Frequent Pattern (FP Growth算法)
FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断得扫描整个数据库进行比对.为了达 到这样的效果,它采用了一种简洁的数据 ...
- FP Tree算法原理总结(转载)
FP Tree算法原理总结 在Apriori算法原理总结中,我们对Apriori算法的原理做了总结.作为一个挖掘频繁项集的算法,Apriori算法需要多次扫描数据,I/O是很大的瓶颈.为了解决这个问题 ...
- 机器学习(十五)— Apriori算法、FP Growth算法
1.Apriori算法 Apriori算法是常用的用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策. Apriori算法采用了迭代的方法,先搜 ...
- Frequent Pattern 挖掘之二(FP Growth算法)
Frequent Pattern 挖掘之二(FP Growth算法) FP树构造 FP Growth算法利用了巧妙的数据结构,大大降低了Aproir挖掘算法的代价,他不需要不断得生成候选项目队列和不断 ...
- Fp关联规则算法计算置信度及MapReduce实现思路
说明:參考Mahout FP算法相关相关源代码. 算法project能够在FP关联规则计算置信度下载:(仅仅是单机版的实现,并没有MapReduce的代码) 使用FP关联规则算法计算置信度基于以下的思 ...
随机推荐
- java多线程 并发编程
一.多线程 1.操作系统有两个容易混淆的概念,进程和线程. 进程:一个计算机程序的运行实例,包含了需要执行的指令:有自己的独立地址空间,包含程序内容和数据:不同进程的地址空间是互相隔离的:进程拥有各种 ...
- java web 限制同一个用户在不同处登入
用到的技术:map集合,sessionListener监听器,Fiter过滤器. 实现思路: 一.利用一个全局的map集合来保存每个用户sessionID的值的一个集合.一个用户对应一个session ...
- vue-cli2嵌入html
1.使用iframe <!-- 相对路径/绝对路径 --> <iframe src="../../../static/zsw.html"></ifra ...
- 【Linux】【Shell】【Basic】字符串操作
1. 字符串切片: ${var:offset:number} 取字符串的子串: 取字符趾的最右侧的几个字符:${ ...
- 程序员Meme 第01期
- Jenkins动态选择分支/tag
目录 一.简介 二.配置 三.配置tag 四.其它方法 五.List Git Branches插件 一.简介 一般选择分支构建,Git Parameter插件即可.这里是应用pipline的同时,可以 ...
- Nginx配置重定向
目录 一.简介 二.配置 访问a页面重定向到b页面 访问当前nginx,重定向到其他网址 一.简介 据相关变量重定向和选择不同的配置,从一个 location 跳转到另一个 location,不过这样 ...
- 搞IT的应届生如何写好简历?
本人在互联网大厂和外企做过技术面试官,也有过校招和招聘应届毕业生的经验,所以自认为在这个问题上有一定的发言权. 应届毕业生(其实其他求职者也一样)首先要知道,面试官凭什么决定这份简历有面试机会?而 ...
- linux文件属性和系统信息
文件属性 1.权限 权限指某一个用户针对某个文件所能做的操作 1.权限的种类 可读(r) 可写(w) 可执行(x) 无权限(-) 2.权限位 linux中的权限位分为三个部分,分别是属主.属组和其他人 ...
- ICCV2021 | Tokens-to-Token ViT:在ImageNet上从零训练Vision Transformer
前言 本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从 ...