P3312 数表

题意

求出

\[\sum_{i=1}^n\sum_{j=1}^m\sigma(\gcd(i,j))[\sigma(\gcd(i,j))\le a]
\]

其中 \(\sigma\) 表示约数和。

思路/推导

考虑没有 \(a\) 的限制的情况。

\[\begin{aligned}
ans&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[\gcd(i,j)=1]\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}\sum_{p\mid i\land p\mid j}\mu(p)\\
&=\sum_{d=1}^{\min(n,m)}\sigma(d)\sum_{p=1}^{\left\lfloor\frac{\min(n,m)}{d}\right\rfloor}\mu(p)\left\lfloor\frac{n}{dp}\right\rfloor\left\lfloor\frac{m}{dp}\right\rfloor\\
&=\sum_{T=1}^{\min(n,m)}\sum_{d=1}^T\sigma(d)\mu(\frac Td)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor
\end{aligned}
\]

考虑加入 \(a\) 的限制。将询问按照 \(a\) 大小离线,然后用一个树状数组维护 \(\sum_d\sigma(d)\mu(\frac Td)\) 的前缀和即可。

具体是将线性筛出的所有数的约数和从小到大进行排序,在从小到大查询的时候进行更新。

不会筛 \(\sigma\) 的可以看我的另一篇博客

时间复杂度瓶颈在于查询,需要用到数论分块,为 \(O(q\sqrt n\log n)\)。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<cmath>
#include<utility>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=x*10+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=1e5+10,maxm=2e4+10,N=1e5;
int n,p[maxn/10],mu[maxn],tot,c[maxn],ans[maxm],g[maxn];
pair<int,int> f[maxn];
bool mark[maxn];
inline void insert(int x,int k){for(;x<=N;x+=x&-x) c[x]+=k;}
inline int query(int x){int ans=0;for(;x;x-=x&-x) ans+=c[x];return ans;}
struct Query{
int n,m,a,id;
inline bool operator < (const Query& zp) const {return a<zp.a;}
inline int solve(){
if(n>m) swap(n,m);
int ans=0;
for(int l=1,r;l<=n;l=r+1)
r=min(n/(n/l),m/(m/l)),ans+=((query(r)-query(l-1))*(n/l)*(m/l));
return ans;
}
}q[maxm];
inline void work(){
mu[1]=1;
f[1]=make_pair(1,1);
for(int i=2;i<=N;i++){
if(!mark[i]) p[++tot]=i,mu[i]=-1,g[i]=i+1,f[i]=make_pair(i+1,i);
for(int j=1,tmp;j<=tot and (tmp=i*p[j])<=N;j++){
mark[tmp]=true;
if(i%p[j]==0){
mu[tmp]=0;
g[tmp]=g[i]*p[j]+1;
f[tmp]=make_pair(f[i].first/g[i]*g[tmp],tmp);
break;
}
mu[tmp]=-mu[i];
g[tmp]=p[j]+1;
f[tmp]=make_pair(f[i].first*f[p[j]].first,tmp);
}
}
sort(f+1,f+1+N);
n=read();
for(int i=1;i<=n;i++) q[i].n=read(),q[i].m=read(),q[i].a=read(),q[i].id=i;
sort(q+1,q+1+n);
for(int i=1,j=1;i<=n;i++){
while(f[j].first<=q[i].a and j<=N){
for(int k=f[j].second;k<=N;k+=f[j].second) insert(k,f[j].first*mu[k/f[j].second]);
j++;
}
ans[q[i].id]=q[i].solve();
}
for(int i=1;i<=n;i++) printf("%d\n",ans[i]&(~(1<<31)));
}
}
signed main(){
star::work();
return 0;
}

P3312 数表的更多相关文章

  1. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  2. P3312 [SDOI2014]数表

    啊啊啊我昨天怎么没写题解wwww 补昨日题解... 题目链接 : https://www.luogu.org/problemnew/show/P3312 也是莫反 我要把fft留到今天写 [和zyn小 ...

  3. 洛谷 P3312 [SDOI2014]数表 解题报告

    P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...

  4. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

  5. [bzoj3529] [洛谷P3312] [Sdoi2014] 数表

    Description 有一张n×m的数表,其第i行第j列(1 < =i < =n,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  6. luogu P3312 [SDOI2014]数表

    传送门 我们看要求的东西\[\sum_{i=1}^{n}\sum_{j=1}^{m}[\sigma(gcd(i,j))\le a]\sigma(gcd(i,j))\] 然而\(\le a\)比较烦,可 ...

  7. 洛谷P3312 [SDOI2014]数表(莫比乌斯反演+树状数组)

    传送门 不考虑$a$的影响 设$f(i)$为$i$的约数和 $$ans=\sum\limits_{i=1}^n\sum\limits_{j=1}^nf(gcd(i,j))$$ $$=\sum\limi ...

  8. 洛谷 P3312 [SDOI2014]数表

    式子化出来是$\sum_{T=1}^m{\lfloor}\frac{n}{T}{\rfloor}{\lfloor}\frac{m}{T}{\rfloor}\sum_{k|T}\mu(\frac{T}{ ...

  9. 并不对劲的bzoj3529:loj2193:p3312:[SDOI2014]数表

    题目大意 定义函数\(f(x)=\sum_{k|x}k\) \(t\)(\(t\leq2*10^4\))组询问,每组给定\(n,m,a\)(\(n,m\leq10^5,a\leq10^9\)),求: ...

随机推荐

  1. MySQL笔记03(黑马)

    今日内容 DQL:查询语句 排序查询 聚合函数 分组查询 分页查询 约束 多表之间的关系 范式 数据库的备份和还原 DQL:查询语句 排序查询 语法:order by 子句 order by 排序字段 ...

  2. Samba 服务基础

    配置SMB共享,跨平台的共享,Windows与Linux的共享 • Samba 软件项目 用途:为客户机提供共享使用的文件夹 协议:SMB(TCP 139).CIFS(TCP 445) • 所需软件包 ...

  3. 【NX二次开发】图标图像

    用户定义位图的目录位置的环境变量 UGII_BITMAP_PATH 在NX日志中查看NX图标需要设置的变量 变量名:PRINT_DIALOG_BITMAP_NAMES 变量值:1 查看系统图标的方法1 ...

  4. 孟老板 ListAdapter封装, 告别Adapter代码 (三)

    BaseAdapter系列 ListAdapter封装, 告别Adapter代码 (一) ListAdapter封装, 告别Adapter代码 (二) ListAdapter封装, 告别Adapter ...

  5. CCF CSP认证考试在线评测系统

    关于 CCF CSP 认证考试在线评测系统 CCF CSP 认证考试简介 CCF 是中国计算机学会的简称.CCF 计算机软件能力认证(简称 CCF CSP 认证考试)是 CCF 于 2014 年推出, ...

  6. Kubernetes中予许及限制(PodSecurityPolicy)使用宿主机资源

    1.在pod中使用宿主机命名空间.端口等资源 pod中的容器通常在分开的Linux命名空间中运行.这些命名空间将容器中的进程与其他容器中,或者宿主机默认命名空间中的进程隔离开来. 例如,每一个pod有 ...

  7. 广州小公司:List集合你是熟悉的,对吧?

    <对线面试官>系列目前已经连载27篇啦!有深度风趣的系列! [对线面试官]Java注解 [对线面试官]Java泛型 [对线面试官] Java NIO [对线面试官]Java反射 & ...

  8. 关于 C#的一些记录

    1, 注意: 使用Linq to Sql 查询数据库的时候,进行where 判断需要注意.我使用的EF,以下为我的记录使用Contain 需要 使用 *.Contains("" + ...

  9. js 获取系统当前时间,判断时间大小

    1.获取系统当前时间 getNowTime(tempminit) { if (!tempminit) { tempminit = 0; } var date = new Date(); date.se ...

  10. 常用API文字版

    常用API Object类 jvm启动,默认导入的是java.lang包中的内容,该包下的内容不需要import进行导入. 概念 该类是java体系中的根类,所有对象都将该类作为直接或者间接父类 所有 ...