如何更好理解Peterson算法?
如何更好理解Peterson算法?
1 Peterson算法提出的背景
在我们讲述Peterson算法之间,我们先了解一下Peterson算法提出前的背景(即:在这个算法提出之前,前人们都做了哪些工作)这对于我们之后理解Peterson算法有很大的裨益。
Peterson 算法是基于双线程互斥访问的LockOne与LockTwo算法而来。LockOne算法使用一个 flag 布尔数组,LockTwo 使用一个 turn的整型量,都实现了互斥,但是都存在死锁的可能。Peterson 算法把这两种算法结合起来,完美地用软件实现了双线程互斥问题。
2 Peterson算法
首先,我们来看看下面这两段代码:
Pi进程:
flag[i] = True;
while(flag[j]);
critical section;
flag[i] = False;
remainder section;
Pj进程:
flag[j] = True;
while(flag[i]);
critical section;
flag[j] = False;
remainder section;
以上是用来实现两个进程互斥访问临界区的两端代码,我们可以这样来理解这两段代码,其中flag[i]表示进程Pi表示想要进入临界区,while(flag[j])可以理解为Pi在自己进临界区之前,先问问Pj是否想要进入临界区,如果Pj想进的话它就等待(Pi品德高尚);类似的,Pj也是同样的。双方互相谦让的结果是,最终两个进程谁也进不了临界区。(可以想象这样一个生活场景,两个人同时想进屋,结果在门口谦让了了半天,过了很久都没进去)
Peterson算法就是在上面代码的基础之上,又引入了一个变量turn,打破了这种因为谦让而导致“饥饿”的现象。下面我们先来看看Peterson算法的代码:
Pi进程:
flag[i] = True;
turn = j;
while(flag[j] && turn == j);
critical section;
flag[i] = False;
remainder section;
Pj进程:
flag[j] = True;
turn = i;
while(flag[i] && turn == i);
critical section;
flag[j] = False;
remainder section;
怎么理解变量turn呢?可以将turn变量理解成轮到谁进入临界区了。举个例子:turn = i,表示轮到Pi进入临界区。那么上面这个代码就可以理解为:首先,Pi想进入临界区(flag[i] = True),然后,还是和前面的代码一样,Pi会先把进入临界区的机会让给Pj(turn = j),同样地,当Pj想进入临界区时,也会将进入临界区的权利先让给Pi。紧接着,变量turn的作用就显现出来了,当Pj把进入临界区的机会又让给Pi的时候(注意:这是发生在Pi将进入临界区的优先权让给Pj之后),Pi这次就会直接进入临界区。就不会再次出现一直互相谦让,最终导致均无法进入临界区的情况了。
关于为什么当进入临界区的权利(即turn = i)又回到Pi手里时,Pi会直接进入临界区的分析?我们可以分析一下Pi能够成功进入临界区的条件(即:while(flag[j] && turn == j)语句):
总的分为以下两种情况:
Pj不想进入临界区(flag[j] = False)
当Pj不想进入临界区时,自然也就不存在Pi和Pj冲突的情况,Pi当然就直接进入临界区。
Pj想进入临界区(flag[j] = True)
当Pj想进入临界区,又分为以下两种情况:
当 turn = i
turn = i说明当前轮到i进入临界区了 ,这个时候i就直接进入临界区了,不再谦让。(其实这个挺合理的,根据Peterson算法的代码我们不难发现因为turn的值是根据先后想要进入临界区的顺序排列的)
当 turn != i
turn != i 说明当前轮到i进入临界区了没有轮到Pi进入临界区,Pi自然需要等待。
仅过上面的分析,我们就不难理解,当Pi和Pj经过一轮谦让之后,就会直接根据turn的值(即:该轮到谁进临界区了)来直接决定谁该进入临界区。现在回过头回顾整个算法,其实我们会发现,Peterson算法的思想会更贴近于生活中的真实情况,大家一般都是略微谦让一下,然后直奔主题,难道不是吗?哈哈
3 参考资料
[1]维基百科编者. Peterson算法[G/OL]. 维基百科, 2021(20210501)[2021-05-01]. https://zh.wikipedia.org/w/index.php?title=Peterson%E7%AE%97%E6%B3%95&oldid=65429794.
如何更好理解Peterson算法?的更多相关文章
- (转)进程同步之临界区域问题及Peterson算法
转自:http://blog.csdn.net/speedme/article/details/17595821 1. 背景 首先,看个例子,进程P1,P2共用一个变量COUNT,初始值为0 ...
- Raft 为什么是更易理解的分布式一致性算法
一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...
- 【转】Raft 为什么是更易理解的分布式一致性算法
编者按:这是看过的Raft算法博客中比较通俗的一篇了,讲解问题的角度比较新奇,图文并茂,值得一看.原文链接:Raft 为什么是更易理解的分布式一致性算法 一致性问题可以算是分布式领域的一个圣殿级问题了 ...
- Raft 为什么是更易理解的分布式一致性算法(转)
一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...
- 【转载】Raft 为什么是更易理解的分布式一致性算法
一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...
- Peterson算法与Dekker算法解析
进来Bear正在学习巩固并行的基础知识,所以写下这篇基础的有关并行算法的文章. 在讲述两个算法之前,需要明确一些概念性的问题, Race Condition(竞争条件),Situations lik ...
- 简单的理解deflate算法
简单的理解deflate算法 最近做压缩算法. 用到了deflate压缩算法, 找了很多资料, 这篇文章算是讲的比较易懂的, 这篇文章不长,但却浅显易懂, 基本上涵盖了我想要知道的所有要点. 翻译 ...
- 理解 KMP 算法
KMP(The Knuth-Morris-Pratt Algorithm)算法用于字符串匹配,从字符串中找出给定的子字符串.但它并不是很好理解和掌握.而理解它概念中的部分匹配表,是理解 KMP 算法的 ...
- 内存栅栏(memory barrier):解救peterson算法的应用陷阱
最近一个项目中用到了peterson算法来做临界区的保护,简简单单的十几行代码,就能实现两个线程对临界区的无锁访问,确实很精炼.但是在这不是来分析peterson算法的,在实际应用中发现peterso ...
随机推荐
- 三次给你讲清楚Redis之Redis是个啥
摘要:Redis是一款基于键值对的NoSQL数据库,它的值支持多种数据结构:字符串(strings).哈希(hashes).列表(lists).集合(sets).有序集合(sorted sets)等. ...
- jQuery核心函数和静态方法
jQuery核心函数 从jQuery文档中可以看出,jQuery核心函数一共3大类4小类 jQuery(callback) 当DOM加载完成后执行传入的回调函数 <script> $(fu ...
- 随便聊聊 Java 8 的函数式编程
函数式编程(Functional Programming) 首先,我们来了解一个叫做"编程范式"的概念. 什么是"编程范式"呢?简单来说就是指导我们编程的方法论 ...
- BUAA_OO_第四单元
一.UML解析器设计 先看下题目:第四单元实现一个基于JDK 8带有效性检查的UML(Unified Modeling Language)类图,顺序图,状态图分析器 MyUmlInteractio ...
- 深入剖析共识性算法 Raft
一. Raft简介 1.1 Raft简介 Raft 是一种为了管理日志复制的分布式一致性算法.Raft 出现之前,Paxos 一直是分布式一致性算法的标准.Paxos 难以理解,更难以实现.Raft ...
- 字符串函数的实现(三)之strcat
C语言中的字符串函数有如下这些 获取字符串长度 strlen 长度不受限制的字符串函数 strcpy strcat strcmp 长度受限制的字符串函数 strncpy strncat strncmp ...
- kubernetes 的负载均衡策略
Kubernetes提供了两种负载分发策略: RoundRobin和SessionAffinity ◎ RoundRobin:轮询模式,即轮询将请求转发到后端的各个Pod上. ◎ SessionAff ...
- ArrayList、CopyOnWriteArrayList源码解析(JDK1.8)
本篇文章主要是学习后的知识记录,存在不足,或许不够深入,还请谅解. 目录 ArrayList源码解析 ArrayList中的变量 ArrayList构造函数 ArrayList中的add方法 Arra ...
- Ubuntu 20.04 简述环境配置&美化
不敢说是最好的,基本上是最全面的了~ 修改系统软件源 一开始是国外的源比较慢,建议换成国内的源,常用的有清华源.阿里源等. 清华源地址 Ubuntu 的软件源配置文件是 /etc/apt/source ...
- Eureka原理剖析
Eureka作为微服务中的注册中心,为微服务集群间各个服务进行调用提供寻址的功能,有了它集群间的服务只需要指定服务名称就可以了,无需再去关心服务具体部署的服务器IP,即可正常调用.下面来对其中我们开发 ...