如何更好理解Peterson算法?

1 Peterson算法提出的背景

在我们讲述Peterson算法之间,我们先了解一下Peterson算法提出前的背景(即:在这个算法提出之前,前人们都做了哪些工作)这对于我们之后理解Peterson算法有很大的裨益。

Peterson 算法是基于双线程互斥访问的LockOne与LockTwo算法而来。LockOne算法使用一个 flag 布尔数组,LockTwo 使用一个 turn的整型量,都实现了互斥,但是都存在死锁的可能。Peterson 算法把这两种算法结合起来,完美地用软件实现了双线程互斥问题。

2 Peterson算法

首先,我们来看看下面这两段代码:

Pi进程:
flag[i] = True;
while(flag[j]);
critical section;
flag[i] = False;
remainder section;
Pj进程:
flag[j] = True;
while(flag[i]);
critical section;
flag[j] = False;
remainder section;

以上是用来实现两个进程互斥访问临界区的两端代码,我们可以这样来理解这两段代码,其中flag[i]表示进程Pi表示想要进入临界区,while(flag[j])可以理解为Pi在自己进临界区之前,先问问Pj是否想要进入临界区,如果Pj想进的话它就等待(Pi品德高尚);类似的,Pj也是同样的。双方互相谦让的结果是,最终两个进程谁也进不了临界区。(可以想象这样一个生活场景,两个人同时想进屋,结果在门口谦让了了半天,过了很久都没进去)

Peterson算法就是在上面代码的基础之上,又引入了一个变量turn,打破了这种因为谦让而导致“饥饿”的现象。下面我们先来看看Peterson算法的代码:

Pi进程:
flag[i] = True;
turn = j;
while(flag[j] && turn == j);
critical section;
flag[i] = False;
remainder section;
Pj进程:
flag[j] = True;
turn = i;
while(flag[i] && turn == i);
critical section;
flag[j] = False;
remainder section;

怎么理解变量turn呢?可以将turn变量理解成轮到谁进入临界区了。举个例子:turn = i,表示轮到Pi进入临界区。那么上面这个代码就可以理解为:首先,Pi想进入临界区(flag[i] = True),然后,还是和前面的代码一样,Pi会先把进入临界区的机会让给Pj(turn = j),同样地,当Pj想进入临界区时,也会将进入临界区的权利先让给Pi。紧接着,变量turn的作用就显现出来了,当Pj把进入临界区的机会又让给Pi的时候(注意:这是发生在Pi将进入临界区的优先权让给Pj之后),Pi这次就会直接进入临界区。就不会再次出现一直互相谦让,最终导致均无法进入临界区的情况了。

关于为什么当进入临界区的权利(即turn = i)又回到Pi手里时,Pi会直接进入临界区的分析?我们可以分析一下Pi能够成功进入临界区的条件(即:while(flag[j] && turn == j)语句):

总的分为以下两种情况:

  1. Pj不想进入临界区(flag[j] = False)

    当Pj不想进入临界区时,自然也就不存在Pi和Pj冲突的情况,Pi当然就直接进入临界区。

  2. Pj想进入临界区(flag[j] = True)

    当Pj想进入临界区,又分为以下两种情况:

  • 当 turn = i

    turn = i说明当前轮到i进入临界区了 ,这个时候i就直接进入临界区了,不再谦让。(其实这个挺合理的,根据Peterson算法的代码我们不难发现因为turn的值是根据先后想要进入临界区的顺序排列的)

  • 当 turn != i

    turn != i 说明当前轮到i进入临界区了没有轮到Pi进入临界区,Pi自然需要等待。

仅过上面的分析,我们就不难理解,当Pi和Pj经过一轮谦让之后,就会直接根据turn的值(即:该轮到谁进临界区了)来直接决定谁该进入临界区。现在回过头回顾整个算法,其实我们会发现,Peterson算法的思想会更贴近于生活中的真实情况,大家一般都是略微谦让一下,然后直奔主题,难道不是吗?哈哈

3 参考资料

[1]维基百科编者. Peterson算法[G/OL]. 维基百科, 2021(20210501)[2021-05-01]. https://zh.wikipedia.org/w/index.php?title=Peterson%E7%AE%97%E6%B3%95&oldid=65429794.

如何更好理解Peterson算法?的更多相关文章

  1. (转)进程同步之临界区域问题及Peterson算法

    转自:http://blog.csdn.net/speedme/article/details/17595821 1. 背景 首先,看个例子,进程P1,P2共用一个变量COUNT,初始值为0     ...

  2. Raft 为什么是更易理解的分布式一致性算法

    一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...

  3. 【转】Raft 为什么是更易理解的分布式一致性算法

    编者按:这是看过的Raft算法博客中比较通俗的一篇了,讲解问题的角度比较新奇,图文并茂,值得一看.原文链接:Raft 为什么是更易理解的分布式一致性算法 一致性问题可以算是分布式领域的一个圣殿级问题了 ...

  4. Raft 为什么是更易理解的分布式一致性算法(转)

    一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...

  5. 【转载】Raft 为什么是更易理解的分布式一致性算法

    一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...

  6. Peterson算法与Dekker算法解析

    进来Bear正在学习巩固并行的基础知识,所以写下这篇基础的有关并行算法的文章. 在讲述两个算法之前,需要明确一些概念性的问题, Race Condition(竞争条件),Situations  lik ...

  7. 简单的理解deflate算法

    简单的理解deflate算法 最近做压缩算法. 用到了deflate压缩算法,  找了很多资料,  这篇文章算是讲的比较易懂的, 这篇文章不长,但却浅显易懂, 基本上涵盖了我想要知道的所有要点. 翻译 ...

  8. 理解 KMP 算法

    KMP(The Knuth-Morris-Pratt Algorithm)算法用于字符串匹配,从字符串中找出给定的子字符串.但它并不是很好理解和掌握.而理解它概念中的部分匹配表,是理解 KMP 算法的 ...

  9. 内存栅栏(memory barrier):解救peterson算法的应用陷阱

    最近一个项目中用到了peterson算法来做临界区的保护,简简单单的十几行代码,就能实现两个线程对临界区的无锁访问,确实很精炼.但是在这不是来分析peterson算法的,在实际应用中发现peterso ...

随机推荐

  1. 三次给你讲清楚Redis之Redis是个啥

    摘要:Redis是一款基于键值对的NoSQL数据库,它的值支持多种数据结构:字符串(strings).哈希(hashes).列表(lists).集合(sets).有序集合(sorted sets)等. ...

  2. jQuery核心函数和静态方法

    jQuery核心函数 从jQuery文档中可以看出,jQuery核心函数一共3大类4小类 jQuery(callback) 当DOM加载完成后执行传入的回调函数 <script> $(fu ...

  3. 随便聊聊 Java 8 的函数式编程

    函数式编程(Functional Programming) 首先,我们来了解一个叫做"编程范式"的概念. 什么是"编程范式"呢?简单来说就是指导我们编程的方法论 ...

  4. BUAA_OO_第四单元

    一.UML解析器设计 ​ 先看下题目:第四单元实现一个基于JDK 8带有效性检查的UML(Unified Modeling Language)类图,顺序图,状态图分析器 MyUmlInteractio ...

  5. 深入剖析共识性算法 Raft

    一. Raft简介 1.1 Raft简介 Raft 是一种为了管理日志复制的分布式一致性算法.Raft 出现之前,Paxos 一直是分布式一致性算法的标准.Paxos 难以理解,更难以实现.Raft ...

  6. 字符串函数的实现(三)之strcat

    C语言中的字符串函数有如下这些 获取字符串长度 strlen 长度不受限制的字符串函数 strcpy strcat strcmp 长度受限制的字符串函数 strncpy strncat strncmp ...

  7. kubernetes 的负载均衡策略

    Kubernetes提供了两种负载分发策略: RoundRobin和SessionAffinity ◎ RoundRobin:轮询模式,即轮询将请求转发到后端的各个Pod上. ◎ SessionAff ...

  8. ArrayList、CopyOnWriteArrayList源码解析(JDK1.8)

    本篇文章主要是学习后的知识记录,存在不足,或许不够深入,还请谅解. 目录 ArrayList源码解析 ArrayList中的变量 ArrayList构造函数 ArrayList中的add方法 Arra ...

  9. Ubuntu 20.04 简述环境配置&美化

    不敢说是最好的,基本上是最全面的了~ 修改系统软件源 一开始是国外的源比较慢,建议换成国内的源,常用的有清华源.阿里源等. 清华源地址 Ubuntu 的软件源配置文件是 /etc/apt/source ...

  10. Eureka原理剖析

    Eureka作为微服务中的注册中心,为微服务集群间各个服务进行调用提供寻址的功能,有了它集群间的服务只需要指定服务名称就可以了,无需再去关心服务具体部署的服务器IP,即可正常调用.下面来对其中我们开发 ...