FFT 的一些技巧
三次变两次 FFT
我们发现:
\]
也就是说,我们把 \(F(x)\) 作为实部,\(G(x)\) 作为虚部,那么它的平方的虚部的 \(1/2\) 就是 \(F(x)G(x)\)
可惜精度比较低。
四次 FFT 求任意模数多项式乘法
假设我们要求 \(M(x)\times N(x)\pmod{p}\),因为如果我们直接 FFT 就会爆 double ,所以我们可以把 \(M(x)\) 拆成 \(kA(x)+B(x)\),\(N(x)\) 拆成 \(kC(x)+D(x)\),其中 \(k\approx \sqrt{p}\),那么,你的值域就大约变为 \(p\times n\) 的了,但是你就需要 \(7\) 次 FFT 了。
我们假设有 \(Q(x)=A(x)+iB(x),E(x)=C(x)+iD(x)\),设 \(q(x_1)\) 表示 \(Q(x)\) 在 \(x_1\) 的取值,\(A_j\) 表示 \(A(x)\) 第 \(j\) 项系数,那么我们就有:
\]
\]
\]
\]
\]
我们假设 \(q(x).r\) 表示它的实部,\(q(x).f\) 表示它的虚部,那么我们就可以得到:
\]
\]
然后,我们求出 \(A(x)E(x)\) 和 \(B(x)E(x)\),我们就可以得到 \(A(x)C(x),A(x)D(x),B(x)C(x),B(x)D(x)\),然后算就好了。
暂时没有懂 \(3.5\) 次 FFT 的做法,所以不写了。
Code
#include <bits/stdc++.h>
using namespace std;
#define double long double
#define Int register int
#define MAXN 270005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
struct Complex{
double x,y;
Complex(){}
Complex (double _x,double _y){x = _x,y = _y;}
Complex operator / (const double &p)const{return Complex{x / p,y / p};}
Complex operator + (const Complex &p)const{return Complex{x + p.x,y + p.y};}
Complex operator - (const Complex &p)const{return Complex{x - p.x,y - p.y};}
Complex operator * (const Complex &p)const{return Complex{x * p.x - y * p.y,x * p.y + p.x * y};}
};
#define pi (double)acos(-1)
int l,lim,rev[MAXN];
void fft (Complex *a,int type){
for (Int i = 0;i < lim;++ i) if (i < rev[i]) swap (a[i],a[rev[i]]);
for (Int i = 1;i < lim;i <<= 1){
Complex Wn(cos(pi / i),type * sin(pi / i));
for (Int j = 0,r = i << 1;j < lim;j += r){
Complex w(1,0);
for (Int k = 0;k < i;++ k,w = w * Wn){
Complex x = a[j + k],y = w * a[i + j + k];
a[j + k] = x + y,a[i + j + k] = x - y;
}
}
}
if (type == -1) for (Int i = 0;i < lim;++ i) a[i] = a[i] / lim;
}
int n,m,mod,a[MAXN],b[MAXN],ans[MAXN];
Complex Q[MAXN],E[MAXN],C[MAXN],D[MAXN];
#define ll long long
signed main(){
read (n,m,mod),lim = 1;
while (lim < n + m) lim <<= 1,++ l;
for (Int i = 0;i < lim;++ i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << l - 1);int up = (1 << 15) - 1;
for (Int i = 0;i <= n;++ i) read (a[i]),Q[i] = Complex (a[i] >> 15,a[i] & up);
for (Int i = 0;i <= m;++ i) read (b[i]),E[i] = Complex (b[i] >> 15,b[i] & up);
fft (Q,1),fft (E,1);
for (Int i = 0;i < lim;++ i){
int re = (lim - 1) & (lim - i);
C[i] = Complex((Q[i].x + Q[re].x) / 2,(Q[i].y - Q[re].y) / 2) * E[i];
D[i] = Complex((Q[re].y + Q[i].y) / 2,(Q[re].x - Q[i].x) / 2) * E[i];
}
fft (C,-1),fft (D,-1);
for (Int i = 0;i < lim;++ i){
ll v1 = (ll)(C[i].x + 0.5) % mod,v2 = (ll)(C[i].y + D[i].x + 0.5) % mod,v3 = (ll)(D[i].y + 0.5) % mod;
ans[i] = ((v1 << 30) + (v2 << 15) + v3) % mod;
}
for (Int i = 0;i <= n + m;++ i) write ((ans[i] % mod + mod) % mod),putchar (' ');
putchar ('\n');
return 0;
}
FFT 的一些技巧的更多相关文章
- [Algorithm] Polynomial and FFT
排序:nlogn 二分查找:logn <-- 利用单调性,查n次,每次logn Multiply the following pairs of polynomials using at most ...
- 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...
- 快速傅里叶变换(FFT)学习笔记(其一)
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其 ...
- 快速傅里叶变换(FFT)学习笔记(其二)(NTT)
再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其二)(NTT) 写在前面 一些约定 前置知识 同余类和剩余系 欧拉定理 阶 原根 求原根 NTT ...
- Codeforces 986D - Perfect Encoding(FFT+爪巴卡常题)
题面传送门 题意:给出 \(n\),构造出序列 \(b_1,b_2,\dots,b_m\) 使得 \(\prod\limits_{i=1}^mb_i\geq n\),求 \(\sum\limits_{ ...
- HNOI2018题解
在此处输入标题 标签(空格分隔): 未分类 重做了一遍,本来以为很快的,结果搞了一天... 寻宝游戏 可以发现只有\(\&0\)和\(|1\)会对答案有影响 那么对于每一位,我们只要知道最后一 ...
- sgu
dp第几朵花放第几瓶 104 数论 能不能除3:105 106(ex_gcd引入t求范围交) 107(大数乘的FFT) 开空间技巧108 棋盘黑白格消除109(组合数学) java平方根 ...
- 打FFT时中发现的卡常技巧
题目:洛谷P1919 A*B Problem 加强版 我的代码完全借鉴boshi,然而他380ms我880ms...于是我通过彻底的卡(chao)常(dai)数(ma)成功优化到了380ms,都是改了 ...
- 算法系列:FFT 002
转载自http://blog.jobbole.com/58246/ 快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.没有正规计算机科学课程背景 ...
随机推荐
- mycat<三>
server.xml文件 <?xml version="1.0" encoding="UTF-8"?> <!-- - - Licensed u ...
- MySQL alter table时执行innobackupex全备再看Seconds_Behind_Master
1.场景描述 早上7:25 接到Report中心同学告警,昨天业务报表数据没有完整跑出来,缺少500位业务员的数据,并且很快定位到,缺少的是huabei_order库上的数据.Report中心的数据是 ...
- mini-ndn0.5.0 安装教程 (避免踩坑)
写在前面 首先需要确定一些配置,因为在安装的过程中需要编译一些内容,所以需要提前准备好. 本人之前ubuntu系统可能比较乱,在尝试很多次安装后,仍然失败,所以就直接重装了一下.说一下我自己的一些配置 ...
- Servlet生命周期和方法
一.五个生命周期方法,有三个很重要,初始化方法.提供服务方法和销毁方法 1.三个主要方法 2.另外两个重写的成员方法只做了解 二.生命周期详解 其中,每次刷新页面都是一次对servlet访问: 页面访 ...
- 添加class和删除class以及判断是否含有class
addClass(document.body, 'showRightPanel') removeClass(document.body, 'showRightPanel') /** * Add ...
- 机器学习——Adaboost
1 Adaboost 的提出 1990年,Schapire最先构造出一种多项式级的算法,即最初的Boost算法; 1993年,Drunker和Schapire第一次将神经网络作为弱学习器,应用Boos ...
- Django学习day15BBS项目开发2.0
每日测验 """ 今日日考 1.img标签src属性可以指代的值有哪些,各有什么特点 2.pillow模块是干什么用的,主要的方法有哪些 3.简述登陆功能图片验证码相关逻 ...
- PHP中的那些魔术常量
之前我们已经了解了一些常用的魔术方法,除了魔术方法外,PHP还提供一些魔术常量,相信大家在日常的工作中也都使用过,这里给大家做一个总结. 其实PHP还提供了很多常量但都依赖于各类扩展库,而有几个常量是 ...
- Kubernetes-Pod介绍(四)-Deployment
前言 本篇是Kubernetes第七篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kuberne ...
- Centos 7 设置 SFTP
近期要给服务器设置一个SFTP用户,可以上传删除修改的SFTP,但是禁止该用户SSH登录.这里记录下来 先升级 来源: https://blog.csdn.net/fenglailea/article ...