pytorch空间变换网络
pytorch空间变换网络
本文将学习如何使用称为空间变换器网络的视觉注意机制来扩充网络。可以在DeepMind paper 阅读更多有关空间变换器网络的内容。
空间变换器网络是对任何空间变换的差异化关注的概括。空间变换器网络(简称STN)允许神经网络学习如何在输入图像上执行空间变换, 以增强模型的几何不变性。例如,它可以裁剪感兴趣的区域,缩放并校正图像的方向。而这可能是一种有用的机制,因为CNN对于旋转和 缩放以及更一般的仿射变换并不是不变的。
STN的最棒的事情之一,能够简单地将其插入任何现有的CNN,而且只需很少的修改。
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy as np
plt.ion() # 交互模式
1.加载数据
尝试了经典的 MNIST 数据集。使用标准卷积网络增强空间变换器网络。
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 训练数据集
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
# 测试数据集
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(root='.', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])), batch_size=64, shuffle=True, num_workers=4)
- 输出结果
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./MNIST/raw/train-images-idx3-ubyte.gz
Extracting ./MNIST/raw/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./MNIST/raw/train-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./MNIST/raw/t10k-images-idx3-ubyte.gz
Extracting ./MNIST/raw/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./MNIST/raw/t10k-labels-idx1-ubyte.gz
Extracting ./MNIST/raw/t10k-labels-idx1-ubyte.gz
Processing...
Done!
2.什么是空间变换网络?
空间变换器网络归结为三个主要组成部分:
- 本地网络(Localisation Network)是常规CNN,其对变换参数进行回归。不会从该数据集中明确地学习转换,而是网络自动学习增强全局准确性的空间变换。
- 网格生成器( Grid Genator)在输入图像中生成与输出图像中的每个像素相对应的坐标网格。
- 采样器(Sampler)使用变换的参数并将其应用于输入图像。
注意:使用最新版本的Pytorch,它应该包含affine_grid和grid_sample模块。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
# 空间变换器定位 - 网络
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# 3 * 2 affine矩阵的回归量
self.fc_loc = nn.Sequential(
nn.Linear(10 * 3 * 3, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# 使用身份转换初始化权重/偏差
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# 空间变换器网络转发功能
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 3 * 3)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# 执行一般的前进传递
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net().to(device)
3.训练模型
训练模型
使用 SGD(随机梯度下降)算法来训练模型。网络正在以有监督的方式学习分类任务。同时,该模型以端到端的方式自动学习STN。
optimizer = optim.SGD(model.parameters(), lr=0.01)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 500 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
#
# 一种简单的测试程序,用于测量STN在MNIST上的性能。.
#
def test():
with torch.no_grad():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# 累加批量损失
test_loss += F.nll_loss(output, target, size_average=False).item()
# 获取最大对数概率的索引
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
4.可视化 STN 结果
检查学习的视觉注意机制的结果。
定义了一个小辅助函数,以便在训练时可视化变换。
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
# 我们想要在训练之后可视化空间变换器层的输出
# 我们使用STN可视化一批输入图像和相应的变换批次。
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = model.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
for epoch in range(1, 20 + 1):
train(epoch)
test()
# 在某些输入批处理上可视化STN转换
visualize_stn()
plt.ioff()
plt.show()
- 输出结果
Train Epoch: 1 [0/60000 (0%)] Loss: 2.336866
Train Epoch: 1 [32000/60000 (53%)] Loss: 0.841600
Test set: Average loss: 0.2624, Accuracy: 9212/10000 (92%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.527656
Train Epoch: 2 [32000/60000 (53%)] Loss: 0.428908
Test set: Average loss: 0.1176, Accuracy: 9632/10000 (96%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.305364
Train Epoch: 3 [32000/60000 (53%)] Loss: 0.263615
Test set: Average loss: 0.1099, Accuracy: 9677/10000 (97%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.169776
Train Epoch: 4 [32000/60000 (53%)] Loss: 0.408683
Test set: Average loss: 0.0861, Accuracy: 9734/10000 (97%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.286635
Train Epoch: 5 [32000/60000 (53%)] Loss: 0.122162
Test set: Average loss: 0.0817, Accuracy: 9743/10000 (97%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.331074
Train Epoch: 6 [32000/60000 (53%)] Loss: 0.126413
Test set: Average loss: 0.0589, Accuracy: 9822/10000 (98%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.109780
Train Epoch: 7 [32000/60000 (53%)] Loss: 0.172199
Test set: Average loss: 0.0629, Accuracy: 9814/10000 (98%)
Train Epoch: 8 [0/60000 (0%)] Loss: 0.078934
Train Epoch: 8 [32000/60000 (53%)] Loss: 0.156452
Test set: Average loss: 0.0563, Accuracy: 9839/10000 (98%)
Train Epoch: 9 [0/60000 (0%)] Loss: 0.063500
Train Epoch: 9 [32000/60000 (53%)] Loss: 0.186023
Test set: Average loss: 0.0713, Accuracy: 9799/10000 (98%)
Train Epoch: 10 [0/60000 (0%)] Loss: 0.199808
Train Epoch: 10 [32000/60000 (53%)] Loss: 0.083502
Test set: Average loss: 0.0528, Accuracy: 9850/10000 (98%)
Train Epoch: 11 [0/60000 (0%)] Loss: 0.092909
Train Epoch: 11 [32000/60000 (53%)] Loss: 0.204410
Test set: Average loss: 0.0471, Accuracy: 9857/10000 (99%)
Train Epoch: 12 [0/60000 (0%)] Loss: 0.078322
Train Epoch: 12 [32000/60000 (53%)] Loss: 0.041391
Test set: Average loss: 0.0634, Accuracy: 9796/10000 (98%)
Train Epoch: 13 [0/60000 (0%)] Loss: 0.061228
Train Epoch: 13 [32000/60000 (53%)] Loss: 0.137952
Test set: Average loss: 0.0654, Accuracy: 9802/10000 (98%)
Train Epoch: 14 [0/60000 (0%)] Loss: 0.068635
Train Epoch: 14 [32000/60000 (53%)] Loss: 0.084583
Test set: Average loss: 0.0515, Accuracy: 9853/10000 (99%)
Train Epoch: 15 [0/60000 (0%)] Loss: 0.263158
Train Epoch: 15 [32000/60000 (53%)] Loss: 0.127036
Test set: Average loss: 0.0493, Accuracy: 9851/10000 (99%)
Train Epoch: 16 [0/60000 (0%)] Loss: 0.083642
Train Epoch: 16 [32000/60000 (53%)] Loss: 0.028274
Test set: Average loss: 0.0461, Accuracy: 9867/10000 (99%)
Train Epoch: 17 [0/60000 (0%)] Loss: 0.076734
Train Epoch: 17 [32000/60000 (53%)] Loss: 0.034796
Test set: Average loss: 0.0409, Accuracy: 9864/10000 (99%)
Train Epoch: 18 [0/60000 (0%)] Loss: 0.122501
Train Epoch: 18 [32000/60000 (53%)] Loss: 0.152187
Test set: Average loss: 0.0474, Accuracy: 9860/10000 (99%)
Train Epoch: 19 [0/60000 (0%)] Loss: 0.050512
Train Epoch: 19 [32000/60000 (53%)] Loss: 0.270055
Test set: Average loss: 0.0416, Accuracy: 9878/10000 (99%)
Train Epoch: 20 [0/60000 (0%)] Loss: 0.073357
Train Epoch: 20 [32000/60000 (53%)] Loss: 0.017542
Test set: Average loss: 0.0713, Accuracy: 9816/10000 (98%)
脚本的总运行时间:1分48.736秒
pytorch空间变换网络的更多相关文章
- 纯干货:深度学习实现之空间变换网络-part2
https://www.jianshu.com/p/854d111670b6 纯干货:深度学习实现之空间变换网络-part1 在第一部分中,我们主要介绍了两个非常重要的概念:仿射变换和双线性插值,并了 ...
- 论文笔记:空间变换网络(Spatial Transformer Networks)
2015, NIPS Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu Google DeepMind 为什么提出( ...
- 空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解
空间变换网络(STN)原理+2D图像空间变换+齐次坐标系讲解 2018年11月14日 17:05:41 Rosemary_tu 阅读数 1295更多 分类专栏: 计算机视觉 版权声明:本文为博主原 ...
- STN空间变换网络
STN的主要思想是通过网络学习一个变化参数,然后计算出新图在原图上对应的坐标,再通过某种填充方法填充新图. 使得得到的新图很好的适应nn训练.可以理解为是拿来把不规范的图像变换为标准形式的图像. 网络 ...
- PyTorch 系列教程之空间变换器网络
在本教程中,您将学习如何使用称为空间变换器网络的视觉注意机制来扩充您的网络.你可以在DeepMind paper 阅读更多有关空间变换器网络的内容. 空间变换器网络是对任何空间变换的差异化关注的概括. ...
- Spatial Transformer Networks(空间变换神经网络)
Reference:Spatial Transformer Networks [Google.DeepMind]Reference:[Theano源码,基于Lasagne] 闲扯:大数据不如小数据 这 ...
- OpenGL 的空间变换(上):矩阵在空间几何中的应用
在使用 OpenGL 的应用程序中,当我们指定了模型的顶点后,顶点依次会变换到不同的 OpenGL 空间中,最后才会被显示到屏幕上.在变换的过程中,通过使用矩阵,我们更高效地来完成这些变换工作. 本篇 ...
- OpenGL 的空间变换(下):空间变换
通过本文的上篇 OpenGL 的空间变换(上):矩阵在空间几何中的应用 ,我们了解到矩阵的基础概念.并且掌握了矩阵在空间几何中的应用.接下来,我们将结合矩阵来了解 OpenGL 的空间变换. 在使用 ...
- MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...
随机推荐
- hdu4907 水dp 或者set
题意: 给你一些被占用的时间点,然后有一些询问,每次输出大于等于询问时间的没被占用的最小的那个时间. 思路: 直接把所有用过的时间标记上,然后倒着更新一遍当前最小空余时间,或者 ...
- 工具tip
1 postman: chrome的插件,模拟http的get.post等各种请求 2 010: 二进制文件查看,支持很多文件格式和强大的脚本:010 Editor体验 3 BeyondCompare ...
- PHP Proxy 负载均衡技术
<?php $whitelistPatterns = array( ); $forceCORS = false; $anonymize = true; $startURL = "&qu ...
- 内网渗透之MS17-010
在红蓝对抗中,当拿到了位于边界主机的权限后,我们通常会以此为跳板,搭建一个通往内网的隧道,以此继续渗透内网.而在内网中首先想到的就是MS17-010了,因为在内网中,安全措施相对较弱,很多主机存在此漏 ...
- Windows核心编程 第十七章 -内存映射文件(上)
第1 7章 内存映射文件 对文件进行操作几乎是所有应用程序都必须进行的,并且这常常是人们争论的一个问题.应用程序究竟是应该打开文件,读取文件并关闭文件,还是打开文件,然后使用一种缓冲算法,从文件的各个 ...
- C#-获取磁盘,cpu,内存信息
获取磁盘信息 zongdaxiao = GetHardDiskSpace("C") * 1.0 / 1024; user = GetHardDiskFreeSpace(" ...
- 【】POST、GET、RequestParam、ReqestBody、FormData、request payLoad简单认知
背景: 使用vue+axios方式代替ajax后向后台发送数据出现问题了,controller获取不到数据.然后查.找.查.找中似乎找到一些门道.以下列出总结性的东西来记录自己的思考成果,仅供参考,不 ...
- 使用BeanUtils.copyProperties踩坑经历
1. 原始转换 提起对象转换,每个程序员都不陌生,比如项目中经常涉及到的DO.DTO.VO之间的转换,举个例子,假设现在有个OrderDTO,定义如下所示: public class OrderDTO ...
- 软负载Nginx和硬负载F5的优缺点对比
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器. a.软件负载均衡解决方案 在一台服务器的操作系统上,安装一个附加软件 ...
- Java方法区的理解
方法区逻辑上是属于堆的一部分,但一些简单的实现可能不会选择去进行垃圾收集或者进行压缩. 但对于HotSpotJVM而言,方法区还有一个别名叫做Non-Heap,目的就是要和堆分开 所以方法区看作是一块 ...