The Blocks Problem UVA - 101
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks.
In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will “program” a robotic arm to respond to a limited set of commands.
The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n−1) with block bi adjacent to block bi+1 for all 0≤ i < n−1 as shown in the diagram below:
Initial Blocks World
The valid commands for the robot arm that manipulates blocks are:
- move a onto b
where a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and b to their initial positions.
- move a over b
where a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.
- pile a onto b
where a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.
- pile a over b
where a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.
- quit
terminates manipulations in the block world.
Any command in which a = b or in which a and b are in the same stack of blocks is an illegal command. All illegal commands should be ignored and should have no affect on the configuration of blocks.
Input
The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n < 25.
The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered.
You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands.
Output
The output should consist of the final state of the blocks world. Each original block position numbered i (0≤ i < n where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don’t put any trailing spaces on a line.
There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input).
Sample Input
10
move 9 onto 1
move 8 over 1
move 7 over 1
move 6 over 1
pile 8 over 6
pile 8 over 5
move 2 over 1
move 4 over 9
quit
Sample Output
0: 0
1: 1 9 2 4
2:
3: 3
4:
5: 5 8 7 6
6:
7:
8:
9:
HINT
这个要化繁为简,找到各个指令的共同点。对比分析可以直到,只有“onto”和“move”指令才需要清楚上方的木块,因此只需要判断这两个即可。其他的情况可以全部当作从一个堆上转移到另一个堆上面。这样主要的函数就完成了。剩下的就是输出函数很简单不解释。另外题目中涉及大量数组末尾元素的添加和删除,因此使用vector合适。由题意我们需要知道每一个方块的位置,因此增加了坐标数组来时刻记录方块的坐标。
Accepted
#include<algorithm>
#include <iostream>
#include<vector>
#include<string>
using namespace std;
vector<int>block[30];
int id[30][2]; //坐标数组
void print(int n) //输出结果
{
for (int i = 0;i < n;i++)
{
cout << i << ":";
for (int j = 0;j < block[i].size();j++)
cout << " " << block[i][j];
cout << endl;
}
}
void a2b(int a, int b) //从一个堆移动到另一个堆
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
int p = id[b][0]; //b的横坐标
for (int i = n;i < block[m].size();i++)
{
int t = block[m][i];
id[t][0] = p;id[t][1] = block[p].size(); //更新坐标
block[p].push_back(t); //将每一个元素一次添加到另一个堆的顶部
}
while (n != block[m].size())block[m].pop_back();//添加完成后删除原来堆上的木块,相当于”移动“
}
void blockclear(int a) //归为函数
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
for (int i = block[m].size()-1;i > n;i--)
{
int t = block[m][i];
block[t].clear();
block[t].push_back(t); //归为到原本的位置
id[t][0]= t;id[t][1] = 0; //更新坐标
block[m].pop_back(); //弹出
}
}
int main()
{
int n,a,b;
cin >> n;
for (int i = 0;i < n;i++)
{
block[i].push_back(i);
id[i][0] = i;id[i][1] = 0;
}
string s1, s2;
while (cin>>s1&&s1!="quit") //判断终止
{
int ida, idb;
cin >> a >> s2 >> b;
if (id[a][0] == id[b][0])continue; //判断是否合法
else
{
if (s2 == "onto")blockclear(b); //当s2和s1分别为onto和move时此需要清楚木块上方
if (s1 == "move")blockclear(a);
a2b(a, b);
}
}
print(n); //打印
}
The Blocks Problem UVA - 101的更多相关文章
- UVa 101 The Blocks Problem Vector基本操作
UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...
- 木块问题(The Blocks Problem,Uva 101)
不定长数组:vector vector就是一个不定长数组.不仅如此,它把一些常用操作“封装”在了vector类型内部. 例如,若a是一个vector,可以用a.size( )读取它的大小,a.resi ...
- UVa 101 - The Blocks Problem(积木问题,指令操作)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【UVA - 101】The Blocks Problem(vector+模拟)
The Blocks Problem Descriptions:(英语就不说了,直接上翻译吧) 初始时从左到右有n个木块,编号为0~n-1,要求实现下列四种操作: move a onto b: 把a和 ...
- Uva 101 -- the block problem
Uva 101 the block problem 题目大意: 输入n,得到编号为0~n-1的木块,分别摆放在顺序排列编号为0~n-1的位置.现对这些木块进行操作,操作分为四种. 1.move a o ...
- POJ 1208 The Blocks Problem
The Blocks Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5397 Accepted: 231 ...
- The Blocks Problem(vector)
题目链接:http://poj.org/problem?id=1208 The Blocks Problem Time Limit: 1000MS Memory Limit: 10000K Tot ...
- UVa101 The Blocks Problem(不定长数组vector)
The Blocks Problem 书上的一道例题,代码思路比较清晰,可以看懂. 相关知识: 若a是一个vector,则: a.size():读取它的大小 a.resize():改变大小 a.pus ...
- uva 101 POJ 1208 The Blocks Problem 木块问题 vector模拟
挺水的模拟题,刚开始题目看错了,poj竟然过了...无奈.uva果断wa了 搞清题目意思后改了一下,过了uva. 题目要求模拟木块移动: 有n(0<n<25)快block,有5种操作: m ...
随机推荐
- flex图片垂直居中
html <view class="person_info_more"> <image class="more" src="/ima ...
- @RestController和@Controller
1.使用@Controller 注解,在对应的方法上,视图解析器可以解析return 的jsp,html页面,并且跳转到相应页面 若返回json等内容到页面,则需要加@ResponseBody注解 2 ...
- 【资源下载】安卓VS鸿蒙第三方件切换宝典 V1.0
下载<安卓VS鸿蒙第三方件切换宝典> 由于字数较多,本文仅展示部分,查看完整版请点击上方下载 众所周知,安卓应用开发经过这么多年的发展相对成熟和稳定,鸿蒙OS作为后来者兼容一个成熟的开发体 ...
- 基于solarflare的openonload技术以TCPDirect方法加速epoll
[前言]基于solarflare的onload模式加速,官方文档给出TCPDirect模式可以实现从300ns到30ns的延迟缩减.我们需要测试在我们的交易模型框架中他的延时,有人给出了tcpdire ...
- CTS camera的基础操作和debug
手机端 设置永久不锁屏 1 CTS 进入cts目录tools 运行以下命令 ./cts-tradefed adb devices找设备数串 整跑 run cts -m CtsCameraTestCas ...
- 《C++ Primer》笔记 第4章 表达式
C++的表达式要不然是右值(right-value or read-value),要不然就是左值(left-value or location-value). 当一个对象被用作右值的时候,用的是对象的 ...
- TKE 容器网络中的 ARP Overflow 问题探究及其解决之道
作者朱瑜坚,腾讯云后台开发工程师,熟悉 CNI 容器网络相关技术,负责腾讯云 TKE 的容器网络的构建和相关网络组件的开发维护工作,作为主力开发实现了 TKE 下一代容器网络方案. 1. 问题背景 1 ...
- python工业互联网应用实战7—业务层
本章我们演示代码是如何"进化"的,实战的企业日常开发过程中,系统功能总伴随着业务的不断增加,早期简单的代码慢慢的越来越复杂,敏捷编程中的"禅"--简单设计.快速 ...
- SQL-MYSQL的时间格式转换(持续补充)
======================SQLSERVER===================================== SELECT CONVERT(varchar(100), GE ...
- python基础学习之集合set
.集合:set 特点:无序,不可重复(自动去重),可更改,可以与元组.列表互相转换 格式:s = {'x','y','z'} 转换:(转回用set) s = {'x','y','z'} ...