The Blocks Problem UVA - 101
Many areas of Computer Science use simple, abstract domains for both analytical and empirical studies. For example, an early AI study of planning and robotics (STRIPS) used a block world in which a robot arm performed tasks involving the manipulation of blocks.
In this problem you will model a simple block world under certain rules and constraints. Rather than determine how to achieve a specified state, you will “program” a robotic arm to respond to a limited set of commands.
The problem is to parse a series of commands that instruct a robot arm in how to manipulate blocks that lie on a flat table. Initially there are n blocks on the table (numbered from 0 to n−1) with block bi adjacent to block bi+1 for all 0≤ i < n−1 as shown in the diagram below:
Initial Blocks World
The valid commands for the robot arm that manipulates blocks are:
- move a onto b
where a and b are block numbers, puts block a onto block b after returning any blocks that are stacked on top of blocks a and b to their initial positions.
- move a over b
where a and b are block numbers, puts block a onto the top of the stack containing block b, after returning any blocks that are stacked on top of block a to their initial positions.
- pile a onto b
where a and b are block numbers, moves the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto block b. All blocks on top of block b are moved to their initial positions prior to the pile taking place. The blocks stacked above block a retain their order when moved.
- pile a over b
where a and b are block numbers, puts the pile of blocks consisting of block a, and any blocks that are stacked above block a, onto the top of the stack containing block b. The blocks stacked above block a retain their original order when moved.
- quit
terminates manipulations in the block world.
Any command in which a = b or in which a and b are in the same stack of blocks is an illegal command. All illegal commands should be ignored and should have no affect on the configuration of blocks.
Input
The input begins with an integer n on a line by itself representing the number of blocks in the block world. You may assume that 0 < n < 25.
The number of blocks is followed by a sequence of block commands, one command per line. Your program should process all commands until the quit command is encountered.
You may assume that all commands will be of the form specified above. There will be no syntactically incorrect commands.
Output
The output should consist of the final state of the blocks world. Each original block position numbered i (0≤ i < n where n is the number of blocks) should appear followed immediately by a colon. If there is at least a block on it, the colon must be followed by one space, followed by a list of blocks that appear stacked in that position with each block number separated from other block numbers by a space. Don’t put any trailing spaces on a line.
There should be one line of output for each block position (i.e., n lines of output where n is the integer on the first line of input).
Sample Input
10
move 9 onto 1
move 8 over 1
move 7 over 1
move 6 over 1
pile 8 over 6
pile 8 over 5
move 2 over 1
move 4 over 9
quit
Sample Output
0: 0
1: 1 9 2 4
2:
3: 3
4:
5: 5 8 7 6
6:
7:
8:
9:
HINT
这个要化繁为简,找到各个指令的共同点。对比分析可以直到,只有“onto”和“move”指令才需要清楚上方的木块,因此只需要判断这两个即可。其他的情况可以全部当作从一个堆上转移到另一个堆上面。这样主要的函数就完成了。剩下的就是输出函数很简单不解释。另外题目中涉及大量数组末尾元素的添加和删除,因此使用vector合适。由题意我们需要知道每一个方块的位置,因此增加了坐标数组来时刻记录方块的坐标。
Accepted
#include<algorithm>
#include <iostream>
#include<vector>
#include<string>
using namespace std;
vector<int>block[30];
int id[30][2]; //坐标数组
void print(int n) //输出结果
{
for (int i = 0;i < n;i++)
{
cout << i << ":";
for (int j = 0;j < block[i].size();j++)
cout << " " << block[i][j];
cout << endl;
}
}
void a2b(int a, int b) //从一个堆移动到另一个堆
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
int p = id[b][0]; //b的横坐标
for (int i = n;i < block[m].size();i++)
{
int t = block[m][i];
id[t][0] = p;id[t][1] = block[p].size(); //更新坐标
block[p].push_back(t); //将每一个元素一次添加到另一个堆的顶部
}
while (n != block[m].size())block[m].pop_back();//添加完成后删除原来堆上的木块,相当于”移动“
}
void blockclear(int a) //归为函数
{
int m = id[a][0]; //a的坐标(m,n)
int n = id[a][1];
for (int i = block[m].size()-1;i > n;i--)
{
int t = block[m][i];
block[t].clear();
block[t].push_back(t); //归为到原本的位置
id[t][0]= t;id[t][1] = 0; //更新坐标
block[m].pop_back(); //弹出
}
}
int main()
{
int n,a,b;
cin >> n;
for (int i = 0;i < n;i++)
{
block[i].push_back(i);
id[i][0] = i;id[i][1] = 0;
}
string s1, s2;
while (cin>>s1&&s1!="quit") //判断终止
{
int ida, idb;
cin >> a >> s2 >> b;
if (id[a][0] == id[b][0])continue; //判断是否合法
else
{
if (s2 == "onto")blockclear(b); //当s2和s1分别为onto和move时此需要清楚木块上方
if (s1 == "move")blockclear(a);
a2b(a, b);
}
}
print(n); //打印
}
The Blocks Problem UVA - 101的更多相关文章
- UVa 101 The Blocks Problem Vector基本操作
UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...
- 木块问题(The Blocks Problem,Uva 101)
不定长数组:vector vector就是一个不定长数组.不仅如此,它把一些常用操作“封装”在了vector类型内部. 例如,若a是一个vector,可以用a.size( )读取它的大小,a.resi ...
- UVa 101 - The Blocks Problem(积木问题,指令操作)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【UVA - 101】The Blocks Problem(vector+模拟)
The Blocks Problem Descriptions:(英语就不说了,直接上翻译吧) 初始时从左到右有n个木块,编号为0~n-1,要求实现下列四种操作: move a onto b: 把a和 ...
- Uva 101 -- the block problem
Uva 101 the block problem 题目大意: 输入n,得到编号为0~n-1的木块,分别摆放在顺序排列编号为0~n-1的位置.现对这些木块进行操作,操作分为四种. 1.move a o ...
- POJ 1208 The Blocks Problem
The Blocks Problem Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5397 Accepted: 231 ...
- The Blocks Problem(vector)
题目链接:http://poj.org/problem?id=1208 The Blocks Problem Time Limit: 1000MS Memory Limit: 10000K Tot ...
- UVa101 The Blocks Problem(不定长数组vector)
The Blocks Problem 书上的一道例题,代码思路比较清晰,可以看懂. 相关知识: 若a是一个vector,则: a.size():读取它的大小 a.resize():改变大小 a.pus ...
- uva 101 POJ 1208 The Blocks Problem 木块问题 vector模拟
挺水的模拟题,刚开始题目看错了,poj竟然过了...无奈.uva果断wa了 搞清题目意思后改了一下,过了uva. 题目要求模拟木块移动: 有n(0<n<25)快block,有5种操作: m ...
随机推荐
- A study on ILC for linear discrete systems with single delay
论文题目就是随笔的题目,以后的随笔的命名都是如此,特此说明. 论文的主要内容是偏理论研究的,引入了离散矩阵延迟指数函数,来处理具有单时滞线性离散系统.对于离散延迟矩阵指数函数其定义为: \[e_{m} ...
- 小白养成记——Java比较器Comparable和Comparator
一.使用情景 1. 调用Arrays.sort()方法或Collections.sort()方法对自定义类的对象排序 以Arrays.sort()为例.假定有如下自定义的Person类 1 publ ...
- .NET测试--模拟框架NSubstitute
.NET测试--模拟框架NSubstitute .NET测试 NSubstitute在GitHub的开源地址:https://github.com/nsubstitute/nsubstitute/do ...
- PAT-1146(Topological Order)拓扑排序+判断一个序列是否满足拓扑序列
Topological Order PAT-1146 #include<iostream> #include<cstring> #include<string> # ...
- Codeforces 598D (ccpc-wannafly camp day1) Igor In the Museum
http://codeforces.com/problemset/problem/598/D 分析:BFS,同一连通区域的周长一样,但查询过多会导致TLE,所以要将连通区域的答案储存,下次查询到该连通 ...
- 面试官:不会sql优化?出门右转顺便带上门,谢谢
导读 作为一个后端程序员,数据库这个东西是绕不开的,特别是写sql的能力,如果您参加过多次面试,那么一定会从面试复盘中发现面试官总是会考察到sql优化这个东西. 我在之前的多次面试中最常遇到的一个问题 ...
- 在ASP.NET Core中用HttpClient(二)——发送POST, PUT和DELETE请求
在上一篇文章中,我们已经学习了如何在ASP.NET Core中使用HttpClient从Web API获取数据.此外,我们还学习了如何使用GetAsync方法和HttpRequestMessage类发 ...
- T1215拯救公主
1 #include <cstdio> 2 #include <queue> 3 #include <set> 4 #include <cstring> ...
- 【odoo14】第八章、服务侧开发-进阶
本章代码位于作为GITHUB库 https://github.com/PacktPublishing/Odoo-14-Development-Cookbook-Fourth-Edition 在第五章( ...
- python基础学习之元组和字典的功能方法
什么是元组?(tuple) emmmmmm,这个没必要深究吧,就是一排'元素',一行 格式: a = (1,2,3,4,5,6,7,8,9)用小括号表示的,极为元组. 其有序,且不可更改,可以对比st ...