Convolutional Neural Networks: Step by Step

implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.

Notation:

  • Superscript \([l]\) denotes an object of the \(l^{th}\) layer.

    • Example: \(a^{[4]}\) is the \(4^{th}\) layer activation. \(W^{[5]}\) and \(b^{[5]}\) are the \(5^{th}\) layer parameters.
  • Superscript \((i)\) denotes an object from the \(i^{th}\) example.

    • Example: \(x^{(i)}\) is the \(i^{th}\) training example input.
  • Lowerscript \(i\) denotes the \(i^{th}\) entry of a vector.

    • Example: \(a^{[l]}_i\) denotes the \(i^{th}\) entry of the activations in layer \(l\), assuming this is a fully connected (FC) layer.
  • \(n_H\), \(n_W\) and \(n_C\) denote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer \(l\), you can also write \(n_H^{[l]}\), \(n_W^{[l]}\), \(n_C^{[l]}\).

  • \(n_{H_{prev}}\), \(n_{W_{prev}}\) and \(n_{C_{prev}}\) denote respectively the height, width and number of channels of the previous layer. If referencing a specific layer \(l\), this could also be denoted \(n_H^{[l-1]}\), \(n_W^{[l-1]}\), \(n_C^{[l-1]}\).

1. Packages

import numpy as np
import h5py
import matplotlib.pyplot as plt %matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray' %load_ext autoreload
%autoreload 2 np.random.seed(1)

2. Outline of Assignment

  • Convolution functions, including:

    • Zero Padding

    • Convolve window

    • Convolution forward

    • Convolution backward (optional)

  • Pooling functions, including:

    • Pooling forward

    • Create mask

    • Distribute value

    • Pooling backward (optional)

Note: 每一步前向传播,都有对应的 反向传播,因此,你需要把每一步前向传播的parameters,存储到 cache中,用于反向传播.

3. Convolutional Neural Networks

一个卷积层(convolutional layer)将一个输入量转换成不同大小的输出量,如图:

3.1 Zero-Padding

Zero-padding adds zeros around the border of an image:

Figure 1 : Zero-Padding:Image (3 channels, RGB) with a padding of 2.

Zero-Padding的两个好处:

  • 允许你使用 CONV layer 而不必要减小 the height and width of the volumes.(尤其是搭建深层网络时)(Same convolutions)

  • 帮助我们保持图片边缘重要的信息. 没有Padding,很少有值,在下一层能够作为图片的边缘被像素值影响

Exercise:实现函数,用0填充一批示例X的所有图像. Note if you want to pad the array "a" of shape \((5,5,5,5,5)\) with pad = 1 for the 2nd dimension, pad = 3 for the 4th dimension and pad = 0 for the rest, you would do:

a = np.pad(a, ((0,0), (1,1), (0,0), (3,3), (0,0)), 'constant', constant_values = (..,..))

实现:

# GRADED FUNCTION: zero_pad

def zero_pad(X, pad):
"""
Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image,
as illustrated in Figure 1. Argument:
X -- python numpy array of shape (m, n_H, n_W, n_C) representing a batch of m images
pad -- integer, amount of padding around each image on vertical and horizontal dimensions Returns:
X_pad -- padded image of shape (m, n_H + 2*pad, n_W + 2*pad, n_C)
""" ### START CODE HERE ### (≈ 1 line)
# X_pad: (m, n_H + 2*pad, n_W + 2*pad, n_C)
X_pad = np.pad(X, ((0, 0), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=0)
### END CODE HERE ### return X_pad

测试:

np.random.seed(1)
x = np.random.randn(4, 3, 3, 2)
x_pad = zero_pad(x, 2)
print ("x.shape =", x.shape)
print ("x_pad.shape =", x_pad.shape)
print ("x[1,1] =", x[1,1])
print ("x_pad[1,1] =", x_pad[1,1]) fig, axarr = plt.subplots(1, 2)
axarr[0].set_title('x')
axarr[0].imshow(x[0,:,:,0])
axarr[1].set_title('x_pad')
axarr[1].imshow(x_pad[0,:,:,0])

输出:

x.shape = (4, 3, 3, 2)

x_pad.shape = (4, 7, 7, 2)

x[1,1] = [[ 0.90085595 -0.68372786]

[-0.12289023 -0.93576943]

[-0.26788808 0.53035547]]

x_pad[1,1] = [[0. 0.]

[0. 0.]

[0. 0.]

[0. 0.]

[0. 0.]

[0. 0.]

[0. 0.]]

3.2 Single step of convolution

在这一部分中,实现一个卷积的步骤,在该步骤中,将过滤器应用到输入的单个位置中。这将构建卷积单元:

  • 需要一个输入volume

  • 将滤波器应用到输入的每个位置

  • 输出一个不同大小的volume

Figure 2 : Convolution operation 2x2的滤波器(filter) 和 步长(stride)为1 (stride = amount you move the window each time you slide)

计算机图像应用中,左边矩阵中的每个值对应于单个像素值,我们通过3x3滤波器与图像卷积,将其值元素与原始矩阵相乘,然后将它们求和并添加偏差。将实现一个卷积步骤,对应于将滤波器应用于其中一个位置以获得单个实值输出

稍后将将此函数应用于输入的多个位置,以实现完全卷积操作。

Exercise:实现 conv_single_step().

# GRADED FUNCTION: conv_single_step

def conv_single_step(a_slice_prev, W, b):
"""
Apply one filter defined by parameters W on a single slice (a_slice_prev) of the output activation
of the previous layer. Arguments:
a_slice_prev -- slice of input data of shape (f, f, n_C_prev)
W -- Weight parameters contained in a window - matrix of shape (f, f, n_C_prev)
b -- Bias parameters contained in a window - matrix of shape (1, 1, 1) Returns:
Z -- a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data
""" ### START CODE HERE ### (≈ 2 lines of code)
# Element-wise product between a_slice and W. Do not add the bias yet.
s = np.multiply(a_slice_prev, W)
# Sum over all entries of the volume s.
Z = np.sum(s)
# Add bias b to Z. Cast b to a float() so that Z results in a scalar value.
Z = Z + float(b)
### END CODE HERE ### return Z

测试:

np.random.seed(1)
a_slice_prev = np.random.randn(4, 4, 3)
W = np.random.randn(4, 4, 3)
b = np.random.randn(1, 1, 1) Z = conv_single_step(a_slice_prev, W, b)
print("Z =", Z)

输出:

Z = -6.999089450680221

3.3 Convolutional Neural Networks - Forward pass

在前向传播中,你需要很多filters,并在输入上卷积,每次卷积,给你一个2D的矩阵输出,你将stack这些输出,组成一个3D volume:

Exercise: 函数实现 在 input activation A_prev 上卷积filter W.

  • A_prev作为输(上一层m inputs激活的输出). 由W表示F filters/weights,b表示bias vector

  • 其中,每个filter都有自己的bias. 你可以访问包含 stride 和 padding的超参数字典

Hint:

  1. 在matrix "a_prev"(shape(5,5,3))的左上角,选择一个2x2的slice,你需要: a_slice_prev = a_prev[0:2,0:2,:]

    • 你将使用 start/end indexes 定义 a_slice_prev
  2. 要定义 a_slice,你需要首先定义他的corners: vert_start, vert_end, horiz_start and horiz_end,下图展示每个Corner如何用 h,w,f,s 定义:

Figure 3 : Definition of a slice using vertical and horizontal start/end (with a 2x2 filter) (This figure shows only a single channel)

Reminder:

卷积后的shape与input shape 有关的公式:

\[n_H = \lfloor \frac{n_{H_{prev}} - f + 2 \times pad}{stride} \rfloor +1
\]
\[n_W = \lfloor \frac{n_{W_{prev}} - f + 2 \times pad}{stride} \rfloor +1
\]
\[n_C = \text{number of filters used in the convolution}
\]

使用for-loop实现:

# GRADED FUNCTION: conv_forward

def conv_forward(A_prev, W, b, hparameters):
"""
Implements the forward propagation for a convolution function Arguments:
A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
W -- Weights, numpy array of shape (f, f, n_C_prev, n_C)
b -- Biases, numpy array of shape (1, 1, 1, n_C)
hparameters -- python dictionary containing "stride" and "pad" Returns:
Z -- conv output, numpy array of shape (m, n_H, n_W, n_C)
cache -- cache of values needed for the conv_backward() function
""" ### START CODE HERE ###
# Retrieve dimensions from A_prev's shape (≈1 line)
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # Retrieve dimensions from W's shape (≈1 line)
(f, f, n_C_prev, n_C) = W.shape # n_C: n_C个filter # Retrieve information from "hparameters" (≈2 lines)
stride = hparameters['stride']
pad = hparameters['pad'] # Compute the dimensions of the CONV output volume using the formula given above. Hint: use int() to floor. (≈2 lines)
n_H = int((n_H_prev - f + 2 * pad) / stride) + 1
n_W = int((n_W_prev - f + 2 * pad) / stride) + 1 # Initialize the output volume Z with zeros. (≈1 line)
Z = np.zeros((m, n_H, n_W, n_C)) # n_C: n_C个filter # Create A_prev_pad by padding A_prev
A_prev_pad = zero_pad(A_prev, pad) for i in range(m): # loop over the batch of training examples
a_prev_pad = A_prev_pad[i] # Select ith training example's padded activation
for h in range(n_H): # loop over vertical axis of the output volume
for w in range(n_W): # loop over horizontal axis of the output volume
for c in range(n_C): # loop over channels (= #filters) of the output volume # Find the corners of the current "slice" (≈4 lines)
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f # Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line)
a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] # Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line)
Z[i, h, w, c] = conv_single_step(a_slice_prev, W[...,c], b[...,c]) # 第c个filter的全部W,b ### END CODE HERE ### # Making sure your output shape is correct
assert(Z.shape == (m, n_H, n_W, n_C)) # Save information in "cache" for the backprop
cache = (A_prev, W, b, hparameters) return Z, cache

输出:

np.random.seed(1)
A_prev = np.random.randn(10,4,4,3)
W = np.random.randn(2,2,3,8)
b = np.random.randn(1,1,1,8)
hparameters = {"pad" : 2,
"stride": 2} Z, cache_conv = conv_forward(A_prev, W, b, hparameters)
print("Z's mean =", np.mean(Z))
print("Z[3,2,1] =", Z[3,2,1])
print("cache_conv[0][1][2][3] =", cache_conv[0][1][2][3])

Z's mean = 0.048995203528855794

Z[3,2,1] = [-0.61490741 -6.7439236 -2.55153897 1.75698377 3.56208902 0.53036437

5.18531798 8.75898442]

cache_conv[0][1][2][3] = [-0.20075807 0.18656139 0.41005165]

Finally, CONV layer should also contain an activation, in which case we would add the following line of code:

# Convolve the window to get back one output neuron
Z[i, h, w, c] = ...
# Apply activation
A[i, h, w, c] = activation(Z[i, h, w, c])

You don't need to do it here.

4. Pooling layer

池化层(Pooling layer)减小了输入的height和width,有助于减少计算,并且有助于特征检测在输入位置的不变,两种Pooling Layers:

  • Max-pooling layer: slides an (\(f, f\)) window over the input and stores the max value of the window in the output.

  • Average-pooling layer: slides an (\(f, f\)) window over the input and stores the average value of the window in the output.

池化层(Pooling layers)没有反向传播训练参数,他们有 超参数:window size \(f\). 它指定计算fxf窗口max or average的 height和width.

4.1 - Forward Pooling

implement MAX-POOL and AVG-POOL, in the same function.

Exercise: Implement the forward pass of the pooling layer. Follow the hints in the comments below.

Reminder:

As there's no padding, the formulas binding the output shape of the pooling to the input shape is:

\[n_H = \lfloor \frac{n_{H_{prev}} - f}{stride} \rfloor +1
\]
\[n_W = \lfloor \frac{n_{W_{prev}} - f}{stride} \rfloor +1
\]
\[n_C = n_{C_{prev}}
\]
# GRADED FUNCTION: pool_forward

def pool_forward(A_prev, hparameters, mode = "max"):
"""
Implements the forward pass of the pooling layer Arguments:
A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
hparameters -- python dictionary containing "f" and "stride"
mode -- the pooling mode you would like to use, defined as a string ("max" or "average") Returns:
A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C)
cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters
""" # Retrieve dimensions from the input shape
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # Retrieve hyperparameters from "hparameters"
f = hparameters['f']
stride = hparameters['stride'] # Define the dimensions of the output
n_H = int((n_H_prev - f) / stride + 1)
n_W = int((n_W_prev - f) / stride + 1)
n_C = n_C_prev # Initialize output matrix A
A = np.zeros((m, n_H, n_W, n_C)) ### START CODE HERE ###
for i in range(m): # loop over the training examples
for h in range(n_H): # loop on the vertical axis of the output volume
for w in range(n_W): # loop on the horizontal axis of the output volume
for c in range (n_C): # loop over the channels of the output volume # Find the corners of the current "slice" (≈4 lines)
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f # Use the corners to define the current slice on the ith training example of A_prev, channel c. (≈1 line)
a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c] # Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np.max/np.mean.
if mode == "max":
A[i, h, w, c] = np.max(a_prev_slice)
elif mode == "average":
A[i, h, w, c] = np.mean(a_prev_slice) ### END CODE HERE ### # Store the input and hparameters in "cache" for pool_backward()
cache = (A_prev, hparameters) # Making sure your output shape is correct
assert(A.shape == (m, n_H, n_W, n_C)) return A, cache

测试:

np.random.seed(1)
A_prev = np.random.randn(2, 4, 4, 3)
hparameters = {"stride" : 2, "f": 3} A, cache = pool_forward(A_prev, hparameters)
print("mode = max")
print("A =", A)
print()
A, cache = pool_forward(A_prev, hparameters, mode = "average")
print("mode = average")
print("A =", A)

输出:

mode = max

A = [[[[1.74481176 0.86540763 1.13376944]]]

[[[1.13162939 1.51981682 2.18557541]]]]

mode = average

A = [[[[ 0.02105773 -0.20328806 -0.40389855]]]

[[[-0.22154621 0.51716526 0.48155844]]]]

5. Backpropagation in convolutional neural networks

5.1 Convolutional layer backward pass

5.11 Computing dA

\[dA += \sum _{h=0} ^{n_H} \sum_{w=0} ^{n_W} W_c \times dZ_{hw} \tag{1}
\]
  • \(W_c\)是过滤器,\(dZ_{hw}\)是卷积层第h行第w列的使用点乘计算后的输出Z的梯度。
da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]

5.1.2 Computing dW

This is the formula for computing \(dW_c\) (\(dW_c\) is the derivative of one filter) with respect to the loss:

\[dW_c += \sum _{h=0} ^{n_H} \sum_{w=0} ^ {n_W} a_{slice} \times dZ_{hw} \tag{2}
\]

\(dW_c\)是一个过滤器的梯度,aslice是\(Z_{ij}\)的激活值

dW[:,:,:,c] += a_slice * dZ[i, h, w, c]

5.1.3 - Computing db:

This is the formula for computing \(db\) with respect to the cost for a certain filter \(W_c\):

\[db = \sum_h \sum_w dZ_{hw} \tag{3}
\]
db[:,:,:,c] += dZ[i, h, w, c]

Exercise: Implement the conv_backward function below. You should sum over all the training examples, filters, heights, and widths. You should then compute the derivatives using formulas 1, 2 and 3 above.

def conv_backward(dZ, cache):
"""
Implement the backward propagation for a convolution function Arguments:
dZ -- gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n_H, n_W, n_C)
cache -- cache of values needed for the conv_backward(), output of conv_forward() Returns:
dA_prev -- gradient of the cost with respect to the input of the conv layer (A_prev),
numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)
dW -- gradient of the cost with respect to the weights of the conv layer (W)
numpy array of shape (f, f, n_C_prev, n_C)
db -- gradient of the cost with respect to the biases of the conv layer (b)
numpy array of shape (1, 1, 1, n_C)
""" ### START CODE HERE ###
# Retrieve information from "cache"
(A_prev, W, b, hparameters) = cache # Retrieve dimensions from A_prev's shape
(m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape # Retrieve dimensions from W's shape
(f, f, n_C_prev, n_C) = W.shape # Retrieve information from "hparameters"
stride = hparameters["stride"]
pad = hparameters["pad"] # Retrieve dimensions from dZ's shape
(m, n_H, n_W, n_C) = dZ.shape # Initialize dA_prev, dW, db with the correct shapes
dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev))
dW = np.zeros((f, f, n_C_prev, n_C))
db = np.zeros((1, 1, 1, n_C)) # Pad A_prev and dA_prev
A_prev_pad = zero_pad(A_prev, pad)
dA_prev_pad = zero_pad(dA_prev, pad) for i in range(m): # loop over the training examples # select ith training example from A_prev_pad and dA_prev_pad
a_prev_pad = A_prev_pad[i]
da_prev_pad = dA_prev_pad[i] for h in range(n_H): # loop over vertical axis of the output volume
for w in range(n_W): # loop over horizontal axis of the output volume
for c in range(n_C): # loop over the channels of the output volume # Find the corners of the current "slice"
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f # Use the corners to define the slice from a_prev_pad
a_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :]
# a_slice = A_prev_pad[i, vert_start:vert_end, horiz_start:horiz_end, :] # Update gradients for the window and the filter's parameters using the code formulas given above
da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]
# dA_prev_pad[i, vert_start:vert_end, horiz_start:horiz_end, :] += W[:,:,:,c] * dZ[i, h, w, c]
dW[:,:,:,c] += a_slice * dZ[i, h, w, c]
db[:,:,:,c] += dZ[i, h, w, c] # Set the ith training example's dA_prev to the unpaded da_prev_pad (Hint: use X[pad:-pad, pad:-pad, :])
dA_prev[i, :, :, :] = da_prev_pad[pad:-pad, pad:-pad, :]
# dA_prev[i, :, :, :] = dA_prev_pad[i, pad:-pad, pad:-pad, :]
### END CODE HERE ### # Making sure your output shape is correct
assert(dA_prev.shape == (m, n_H_prev, n_W_prev, n_C_prev)) return dA_prev, dW, db

测试:

np.random.seed(1)
dA, dW, db = conv_backward(Z, cache_conv)
print("dA_mean =", np.mean(dA))
print("dW_mean =", np.mean(dW))
print("db_mean =", np.mean(db))

dA_mean = 1.4524377775388075

dW_mean = 1.7269914583139097

db_mean = 7.839232564616838

5.2 Pooling layer - backward pass

5.2.1 Max pooling - backward pass

创建掩码矩阵(保存最大值位置)

\[ X = \begin{bmatrix}
1 && 3 \\
4 && 2
\end{bmatrix} \quad \rightarrow \quad M =\begin{bmatrix}
0 && 0 \\
1 && 0
\end{bmatrix}\tag{4}\]

ps: 4是最大值,则mask中相应位置为1; 其他值不是最大值,则为0

Exercise: Implement create_mask_from_window(). This function will be helpful for pooling backward.

Hints:

  • np.max() may be helpful. It computes the maximum of an array.
  • If you have a matrix X and a scalar x: A = (X == x) will return a matrix A of the same size as X such that:
A[i,j] = True if X[i,j] = x
A[i,j] = False if X[i,j] != x
  • Here, you don't need to consider cases where there are several maxima in a matrix.
def create_mask_from_window(x):
"""
Creates a mask from an input matrix x, to identify the max entry of x. Arguments:
x -- Array of shape (f, f) Returns:
mask -- Array of the same shape as window, contains a True at the position corresponding to the max entry of x.
""" ### START CODE HERE ### (≈1 line)
mask = (x == np.max(x))
### END CODE HERE ### return mask

测试:

np.random.seed(1)
x = np.random.randn(2,3)
mask = create_mask_from_window(x)
print('x = ', x)
print("mask = ", mask)

x = [[ 1.62434536 -0.61175641 -0.52817175]

[-1.07296862 0.86540763 -2.3015387 ]]

mask = [[ True False False]

[False False False]]

Why do we keep track of the position of the max?

  • It's because this is the input value that ultimately influenced the output, and therefore the cost.

  • Backprop is computing gradients with respect to the cost, so anything that influences the ultimate cost should have a non-zero gradient.

  • So, backprop will "propagate" the gradient back to this particular input value that had influenced the cost.

5.2.2 Average pooling - backward pass

均值池化层的反向传播:

\[ dZ = 1 \quad \rightarrow \quad dZ =\begin{bmatrix}
1/4 && 1/4 \\
1/4 && 1/4
\end{bmatrix}\tag{5}\]

This implies that each position in the \(dZ\) matrix contributes equally to output because in the forward pass, we took an average.

Exercise: Implement the function below to equally distribute a value dz through a matrix of dimension shape. Hint

def distribute_value(dz, shape):
"""
Distributes the input value in the matrix of dimension shape Arguments:
dz -- input scalar
shape -- the shape (n_H, n_W) of the output matrix for which we want to distribute the value of dz Returns:
a -- Array of size (n_H, n_W) for which we distributed the value of dz
""" ### START CODE HERE ###
# Retrieve dimensions from shape (≈1 line)
(n_H, n_W) = shape # Compute the value to distribute on the matrix (≈1 line)
average = dz / (n_H * n_W) # Create a matrix where every entry is the "average" value (≈1 line)
a = np.ones(shape) * average
### END CODE HERE ### return a

测试:

a = distribute_value(2, (2,2))
print('distributed value =', a)

distributed value = [[0.5 0.5]

[0.5 0.5]]

5.2.3 Putting it together: Pooling backward

compute backward propagation on a pooling layer.

Exercise: Implement the pool_backward function in both modes ("max" and "average").

  • You will once again use 4 for-loops (iterating over training examples, height, width, and channels).

  • You should use an if/elif statement to see if the mode is equal to 'max' or 'average'.

  • If it is equal to 'average' you should use the distribute_value() function you implemented above to create a matrix of the same shape as a_slice.

  • Otherwise, the mode is equal to 'max', and you will create a mask with create_mask_from_window() and multiply it by the corresponding value of dZ.

def pool_backward(dA, cache, mode = "max"):
"""
Implements the backward pass of the pooling layer Arguments:
dA -- gradient of cost with respect to the output of the pooling layer, same shape as A
cache -- cache output from the forward pass of the pooling layer, contains the layer's input and hparameters
mode -- the pooling mode you would like to use, defined as a string ("max" or "average") Returns:
dA_prev -- gradient of cost with respect to the input of the pooling layer, same shape as A_prev
""" ### START CODE HERE ### # Retrieve information from cache (≈1 line)
(A_prev, hparameters) = cache # Retrieve hyperparameters from "hparameters" (≈2 lines)
stride = hparameters['stride']
f = hparameters['f'] # Retrieve dimensions from A_prev's shape and dA's shape (≈2 lines)
m, n_H_prev, n_W_prev, n_C_prev = A_prev.shape
m, n_H, n_W, n_C = dA.shape # Initialize dA_prev with zeros (≈1 line)
dA_prev = np.zeros(A_prev.shape) for i in range(m): # loop over the training examples
# select training example from A_prev (≈1 line)
a_prev = A_prev[i]
for h in range(n_H): # loop on the vertical axis
for w in range(n_W): # loop on the horizontal axis
for c in range(n_C): # loop over the channels (depth)
# Find the corners of the current "slice" (≈4 lines)
vert_start = h * stride
vert_end = vert_start + f
horiz_start = w * stride
horiz_end = horiz_start + f # Compute the backward propagation in both modes.
if mode == "max":
# Use the corners and "c" to define the current slice from a_prev (≈1 line)
a_prev_slice = a_prev[vert_start:vert_end, horiz_start:horiz_end, c]
# a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c]
# Create the mask from a_prev_slice (≈1 line)
mask = create_mask_from_window(a_prev_slice)
# Set dA_prev to be dA_prev + (the mask multiplied by the correct entry of dA) (≈1 line)
dA_prev[i, vert_start:vert_end, horiz_start:horiz_end, c] += np.multiply(mask, dA[i, h, w, c]) elif mode == "average":
# Get the value a from dA (≈1 line)
da = dA[i, h, w, c]
# Define the shape of the filter as fxf (≈1 line)
shape = (f, f)
# Distribute it to get the correct slice of dA_prev. i.e. Add the distributed value of da. (≈1 line)
dA_prev[i, vert_start:vert_end, horiz_start:horiz_end, c] += distribute_value(da, shape) ### END CODE ### # Making sure your output shape is correct
assert(dA_prev.shape == A_prev.shape) return dA_prev

测试:

np.random.seed(1)
A_prev = np.random.randn(5, 5, 3, 2)
hparameters = {"stride" : 1, "f": 2}
A, cache = pool_forward(A_prev, hparameters)
dA = np.random.randn(5, 4, 2, 2) dA_prev = pool_backward(dA, cache, mode = "max")
print("mode = max")
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])
print()
dA_prev = pool_backward(dA, cache, mode = "average")
print("mode = average")
print('mean of dA = ', np.mean(dA))
print('dA_prev[1,1] = ', dA_prev[1,1])

mode = max

mean of dA = 0.14571390272918056

dA_prev[1,1] = [[ 0. 0. ]

[ 5.05844394 -1.68282702]

[ 0. 0. ]]

mode = average

mean of dA = 0.14571390272918056

dA_prev[1,1] = [[ 0.08485462 0.2787552 ]

[ 1.26461098 -0.25749373]

[ 1.17975636 -0.53624893]]

Convolutional Neural Network-week1编程题(一步步搭建CNN模型)的更多相关文章

  1. Relation-Shape Convolutional Neural Network for Point Cloud Analysis(CVPR 2019)

    代码:https://github.com/Yochengliu/Relation-Shape-CNN 文章:https://arxiv.org/abs/1904.07601 作者直播:https:/ ...

  2. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  3. ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC

    最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...

  4. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  5. 卷积神经网络(Convolutional Neural Network,CNN)

    全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...

  6. Convolutional Neural Network in TensorFlow

    翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...

  7. 卷积神经网络(Convolutional Neural Network, CNN)简析

    目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...

  8. HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记

    HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https:/ ...

  9. A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记

    A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...

随机推荐

  1. 20210716考试-NOIP19

    u,v,w. 这场考过. T1 u 差分裸题 #include<bits/stdc++.h> using namespace std; const int N=5000; int n,m; ...

  2. 未能找到源类型“DbSet<T>”的查询模式的实现。未找到“Select”

    使用EF6.0的模型优先模式进行开发,遇到了报错,如下图 后来发现是没引用using System.Linq; 引用后就不报错了

  3. 记录一下Vray5中文汉化版本中导出EXR或vrimg多通道文件的那些坑和解决方法

    最近在给一个培训机构代课,学生英语基础差,就安装了Vray5的中文版,噩梦从此开始. 做过合成的都知道,需要输出多通道到NUKE或者AE中进行合成,通常情况下把多个pass分成不同的文件对硬盘反复读写 ...

  4. jq给动态标签绑定事件

    $(document).on("click", ".autocompleteDiv .autocomplete_ul li", function () { lo ...

  5. shell中的$0 $n $# $* $@ $? $$

    $0当前脚本的文件名 $n传递给脚本或函数的参数.n 是一个数字,表示第几个参数.例如,第一个参数是$1,第二个参数是$2. $#传递给脚本或函数的参数个数. $*传递给脚本或函数的所有参数. $@传 ...

  6. scrum项目冲刺_day08总结

    摘要:今日完成任务. 1.短信服务正在进行 2.注册登录功能基本实现,但缺少短信验证 3.导航在进行 4.搜索功能基本完成 总任务: 一.appUI页面(已完成) 二.首页功能: 1.图像识别功能(已 ...

  7. POJ题目 1003Hangover(叠放纸牌)

    POJ 1003 叠放纸牌 描述 您可以将多张纸牌悬在桌子上多远?如果您有一张卡,则可以创建一个最大长度为卡长的一半.(我们假设这些卡片必须垂直于桌子.)使用两张卡片,您可以使最上面的卡片悬垂在底部的 ...

  8. 进程代数CSP基础知识总结(Communicating sequencing process)

    进程代数(Process Algebra) Process Algebra 理论 提出者 理论名称 缩写 论文链接 简介 C. A. R. Hoare/Tony Hoare Communicating ...

  9. PHP的那些魔术方法(一)

    在PHP中,有一堆魔术方法,服务于类和对象.PHP虽然也是纯种的面向对象语言,但是之前的PHP还真不是,所以有一些面向对象的标准实现并不完善,比如重载.但是,我们可以通过一些魔术方法来弥补,例如__c ...

  10. 【TP3.2.3】addAll方法的坑

    问题:做一个导入Excel到数据库的功能中需要用到addAll功能,但是每次执行到addAll()时都会报错,如下 Insert value list does not match column li ...