\(\mathcal{Description}\)

  Link.

  有 \(n\) 堆饼干,一开始第 \(i\) 堆有 \(a_i\) 块。每次操作从所有饼干中随机一块,将其随机丢到另外一堆。求所有饼干在一堆时的期望操作次数。答案对 \(998244353\) 取模。

  \(n\le10^5\)。

\(\mathcal{Solution}\)

  起手先把答案表示出来嘛,设 \(E_x\) 表示所有饼干第一次集中,且集中在 \(x\) 的期望步数。那么答案为

\[\sum_{i=1}^nE_x
\]

不好算,削弱限制,令 \(E'_x\) 为所有饼干第一次集中在 \(x\)(可能先集中到了其他位置)的期望步数。我们希望建立 \(E\) 和 \(E'\) 的关系,再设常数 \(C\) 表示所有饼干全部从特定的一堆转移到特定的另一堆的期望步数,\(P_i\) 为饼干第一次集中,集中在 \(i\) 位置的概率。(为了美观全部大写啦 awa),于是

\[E_x=E_x'-\sum_{i\not=x}(P_iC+E_i)
\]

即,所有集中情况减去从另一堆搬过来的情况。接下来拆开和式并移项,得到

\[\sum_{x=1}^nE_x=E_x'-C\sum_{i\not=x}P_i
\]

为了弄掉右式求和条件,左右再套一层 \(\sum\):

\[n\sum_{x=1}^nE_x=\sum_{x=1}^nE_x'-(n-1)C~~~~(\sum_{i=1}^nP_i=1)
\]

所以仅需算出 \(E'\) 和 \(C\) 就能求答案啦。

  注意到 \(E_x'\) 和下标 \(x\) 没有很强的依赖——所有转移都是基于随机的。所以设 \(f(i)\) 为有 \(i\) 块饼干在目标位置上时,把所有 \(s=\sum_{i=1}^na_i\) 块饼干集中到目标位置的期望步数。考虑新一步操作所选取的饼干和放置的位置,有转移:

\[f(i)=\begin{cases}
0&i=s\\
1+\frac{1}{n-1}f(i+1)+\frac{n-2}{n-1}f(i)&i=0\\
1+\frac{s-i}{s}\left(\frac{1}{n-1}f(i+1)+\frac{n-2}{n-1}f(i)\right)+\frac{i}{s}f(i-1)&\text{otherwise}
\end{cases}
\]

也许比较方便消元,我们可以再设其差分 \(\Delta(i)=f(i)-f(i+1)\)(注意是后减前,即再多一块饼干所需的期望步数)。通过 \(f\) 的转移可以轻易得到 \(\Delta\) 的转移:

\[\Delta_i=\begin{cases}
n-1&i=0\\
\frac{(s+i)(n-1)\Delta_{i-1}}{s-i}&\text{otherwise}
\end{cases}
\]

  \(\mathcal O(s)\) 扫出来在做后缀和即可,并且顺便求出了 \(C=f(0)\)。

  综上,\(\mathcal O(n+s)\) 解决本题啦。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
} const int MAXN = 1e5, MAXS = 3e5, MOD = 998244353;
int n, s, a[MAXN + 5], f[MAXS + 5], inv[MAXS + 5]; inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
} inline void init( const int n ) {
inv[1] = 1;
rep ( i, 2, n ) inv[i] = mul( MOD - MOD / i, inv[MOD % i] );
} int main() {
n = rint();
rep ( i, 1, n ) s += a[i] = rint();
init( s ), f[0] = n - 1;
rep ( i, 1, s - 1 ) {
f[i] = mul( inv[s - i], add( mul( s, n - 1 ),
mul( mul( i, n - 1 ), f[i - 1] ) ) );
}
per ( i, s - 1, 0 ) f[i] = add( f[i], f[i + 1] );
int ans = 0;
rep ( i, 1, n ) ans = add( ans, f[a[i]] );
ans = sub( ans, mul( n - 1, f[0] ) );
ans = mul( ans, mpow( n, MOD - 2 ) );
wint( ans ), putchar( '\n' );
return 0;
}

Solution -「CF 1349D」Slime and Biscuits的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. vert.x框架-简单路由使用

    package xue.myVertX; import io.vertx.core.AbstractVerticle; import io.vertx.core.Vertx; import io.ve ...

  2. JavaWeb中Cookie会话管理,理解Http无状态处理机制

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6512995108961387015/ 1.<Servlet简单实现开发部署过程> 2.<Serv ...

  3. MASA Framework - 整体设计思路

    源起 年初我们在找一款框架,希望它有如下几个特点: 学习成本低 只需要学.Net每年主推的技术栈和业务特性必须支持的中间件,给开发同学减负,只需要专注业务就好 个人见解:一款好用的框架应该是补充,而不 ...

  4. 大型站点TCP/IP协议优化

    作为一个DAU上百万或千万的站点,不仅仅需要做好网站应用程序.数据库的优化,还应从TCP/IP协议层去进行相关的优化: 在我的工作中,曾使用到了以下的几种基本的优化方式: 增大最大连接数 在Linux ...

  5. day 13 函数指针类型

    (1).有以下程序: 则正确的选项是[B] (A).7 4 (B).4 10 (C).8 8 (D)10 10 分析:主要考求字符串的长度,strlen是专门求字符串长度的函数,但不包含'\0'在内. ...

  6. Javascript——ES6( ECMAScript 6.0)语法

    ES6( ECMAScript 6.0)语法 一.let/const与var的区别 var 会进行预解析,let/const不会 var可以声明两个重名的变量,let/const不能 var没有块级作 ...

  7. 进程池与线程池基本使用、协程理论与实操、IO模型、前端、BS架构、HTTP协议与HTML前戏

    昨日内容回顾 GIL全局解释器锁 1.在python解释器中 才有GIL的存在(只与解释器有关) 2.GIL本质上其实也是一把互斥锁(并发变串行 牺牲效率保证安全) 3.GIL的存在 是由于Cpyth ...

  8. RT-Thread移植到stm32

    一.移植RT-Thread准备 RT-Thread源码 源码版本和下载方式,可以参考RT-Thread移植入门学习. keil软件 STM32工程项目模板 因为每一厂家提供的库文件可能有一些区别,在移 ...

  9. Tomcat服务器和Servlet版本的对应关系

    Tomcat服务器和Servlet版本的对应关系 Servlet 程序从2.5版本是现在世面使用最多的版本(xml配置) 到了Servlet3.0后.就是注解版本的Servlet使用

  10. Linux查看CPU历史负载

    sar -f /var/log/sa/sa20 -s 02:00:00 -e 06:00:00 | head -n 50 sysstat工具与负载历史回放 很多系统负载过高的时候我们是无法立即获知或者 ...