定义$C_{i}$表示令$i,i+1,i+2,...$的位置减1的操作,定义$I_{i}$表示令$i,i+2,i+4,...$的位置减1的操作
结论1:一定存在一种最优解使得$\forall i$不同时存在$I_{i}$和$I/C_{i+1}$操作(用其他操作等效替代即可证明)
结论2:当$a_{1},a_{2}>0$时,一定存在一种最优解使得其中一次执行了一次$C_{1}$操作(结论1的简单推论)
根据上述结论进行贪心,记录$(a,b,c)$表示可以免费进行$a$次$C_{i}$操作、$b$次$I_{i}$操作和$c$次$I_{i+1}$操作
对于每一个位置,优先使用免费操作,按以下方式选择免费操作:
1.若$a+b\le a_{i}$,将这$a+b$次操作全部执行
2.若$a+b>a_{i}$,相当于要确定$x+y=a_{i}$,其中$0\le x\le a$且$0\le y\le b$
观察到$a_{i}-b\le x\le a$且$a_{i}-a\le y\le b$,那么必然要执行$a_{i}-b$次$C_{i}$操作和$a_{i}-a$次$I_{i}$操作
(这里有一个小问题:为了让次数为非负数,需要让$a$和$b$对$a_{i}$取min,这样显然不影响答案)
对于剩下的免费操作,这些免费操作的意义就是让答案减小$a_{i}'$,因此直接令答案减小$a_{i}'$即可
(之前不能这么做是因为操作有上限,而现在$a_{i}'$已经规定了上限,次数上限无意义)
考虑当处理完$a_{i-1}$和$a_{i}$的免费操作后即可贪心:执行$\min(a_{i-1},a_{i})$次$C_{i-1}$操作和$\max(a_{i-1}-a_{i},0)$次$I_{i-1}$操作
(还有一个细节问题:如果$a+b>a_{i}$,这$a_{i}'$次操作实际上是免费的,因此优先,所以此时$a_{i-1}$只能使用$I_{i-1}$的操作)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int t,n,s1,s2,s3,a[100005];
4 long long ans;
5 void calc1(int k,int x){
6 a[k]-=x;
7 a[k+1]-=x;
8 s1+=x;
9 }
10 void calc2(int k,int x){
11 a[k]-=x;
12 s3+=x;
13 }
14 int main(){
15 scanf("%d",&t);
16 while (t--){
17 scanf("%d",&n);
18 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
19 s1=s2=s3=ans=0;
20 for(int i=1;i<=n;i++){
21 s1=min(s1,a[i]);
22 s2=min(s2,a[i]);
23 int k=max(s1+s2-a[i],0);
24 s1-=k;
25 s2-=k;
26 ans-=k;
27 a[i]-=s1+s2+k;
28 ans+=a[i-1];
29 calc1(i-1,min(a[i-1],a[i]));
30 calc2(i-1,max(a[i-1]-a[i],0));
31 swap(s2,s3);
32 a[i]+=k;
33 }
34 printf("%lld\n",ans+a[n]);
35 }
36 }

[loj3313]序列的更多相关文章

  1. 【夯实PHP基础】UML序列图总结

    原文地址 序列图主要用于展示对象之间交互的顺序. 序列图将交互关系表示为一个二维图.纵向是时间轴,时间沿竖线向下延伸.横向轴代表了在协作中各独立对象的类元角色.类元角色用生命线表示.当对象存在时,角色 ...

  2. Windows10-UWP中设备序列显示不同XAML的三种方式[3]

    阅读目录: 概述 DeviceFamily-Type文件夹 DeviceFamily-Type扩展 InitializeComponent重载 结论 概述 Windows10-UWP(Universa ...

  3. 软件工程里的UML序列图的概念和总结

    俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习! 软件工程的一般开发过程:愿景分析.业务建模,需求分析,健壮性设计,关键设计,最终设计,实现…… 时序图也叫序列图(交互图),属于软件 ...

  4. python序列,字典备忘

    初识python备忘: 序列:列表,字符串,元组len(d),d[id],del d[id],data in d函数:cmp(x,y),len(seq),list(seq)根据字符串创建列表,max( ...

  5. BZOJ 1251: 序列终结者 [splay]

    1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3778  Solved: 1583[Submit][Status][Discu ...

  6. 最长不下降序列nlogn算法

    显然n方算法在比赛中是没有什么用的(不会这么容易就过的),所以nlogn的算法尤为重要. 分析: 开2个数组,一个a记原数,f[k]表示长度为f的不下降子序列末尾元素的最小值,tot表示当前已知的最长 ...

  7. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  8. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

  9. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

随机推荐

  1. 从零入门 Serverless | 函数计算的可观测性

    作者 | 夏莞 阿里巴巴函数计算团队 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复"入门",即可获取 S ...

  2. iOS自定义拍照框拍照&裁剪(一)

    卡片机时代 很重要的一点是,相机本身是没有方向概念的,它不理解拍摄的内容,只会以相机自己的坐标系去保存数据,下图展示了相机对"F"进行四个角度拍摄时返回的图片数据. 最初的卡片机时 ...

  3. SpringBoot-Thymeleaf模板引擎

    模板引擎,我们其实大家听到很多,其实jsp就是一个模板引擎,还有用的比较多的freemarker,包括SpringBoot给我们推荐的Thymeleaf,模板引擎有非常多,但再多的模板引擎,他们的思想 ...

  4. FastAPI 学习之路(十二)接口几个额外信息和额外数据类型

    系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...

  5. app定位工具介绍

     一.元素获取工具WEditor使用   1.安装WEditor:pip3 install weditor   2.启动WEditor:python3 -m weditor    Android : ...

  6. 2020.10.23-vj个人赛补题

    B - B Polycarp loves lowercase letters and dislikes uppercase ones. Once he got a string s consistin ...

  7. NX9.0和NX10.0做自定义操作可以用的函数

    NX9.0:LIBUFUNX.DLL int UF_OPER_ask_check_geom(void *,int *,unsigned int * *) int UF_OPER_ask_first_o ...

  8. java定时任务调度框架

    java定时任务目前主要有三种: Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务.使用这种方式可以让你的程序按照某一个频度执行,但不能在 ...

  9. 【UE4】GAMES101 图形学作业2:光栅化和深度缓存

    总览 在上次作业中,虽然我们在屏幕上画出一个线框三角形,但这看起来并不是那么的有趣.所以这一次我们继续推进一步--在屏幕上画出一个实心三角形,换言之,栅格化一个三角形.上一次作业中,在视口变化之后,我 ...

  10. Java:ArrayList类小记

    Java:ArrayList类小记 对 Java 中的 ArrayList类,做一个微不足道的小小小小记 概述 java.util.ArrayList 是大小可变的数组的实现,存储在内的数据称为元素. ...