定义$C_{i}$表示令$i,i+1,i+2,...$的位置减1的操作,定义$I_{i}$表示令$i,i+2,i+4,...$的位置减1的操作
结论1:一定存在一种最优解使得$\forall i$不同时存在$I_{i}$和$I/C_{i+1}$操作(用其他操作等效替代即可证明)
结论2:当$a_{1},a_{2}>0$时,一定存在一种最优解使得其中一次执行了一次$C_{1}$操作(结论1的简单推论)
根据上述结论进行贪心,记录$(a,b,c)$表示可以免费进行$a$次$C_{i}$操作、$b$次$I_{i}$操作和$c$次$I_{i+1}$操作
对于每一个位置,优先使用免费操作,按以下方式选择免费操作:
1.若$a+b\le a_{i}$,将这$a+b$次操作全部执行
2.若$a+b>a_{i}$,相当于要确定$x+y=a_{i}$,其中$0\le x\le a$且$0\le y\le b$
观察到$a_{i}-b\le x\le a$且$a_{i}-a\le y\le b$,那么必然要执行$a_{i}-b$次$C_{i}$操作和$a_{i}-a$次$I_{i}$操作
(这里有一个小问题:为了让次数为非负数,需要让$a$和$b$对$a_{i}$取min,这样显然不影响答案)
对于剩下的免费操作,这些免费操作的意义就是让答案减小$a_{i}'$,因此直接令答案减小$a_{i}'$即可
(之前不能这么做是因为操作有上限,而现在$a_{i}'$已经规定了上限,次数上限无意义)
考虑当处理完$a_{i-1}$和$a_{i}$的免费操作后即可贪心:执行$\min(a_{i-1},a_{i})$次$C_{i-1}$操作和$\max(a_{i-1}-a_{i},0)$次$I_{i-1}$操作
(还有一个细节问题:如果$a+b>a_{i}$,这$a_{i}'$次操作实际上是免费的,因此优先,所以此时$a_{i-1}$只能使用$I_{i-1}$的操作)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int t,n,s1,s2,s3,a[100005];
4 long long ans;
5 void calc1(int k,int x){
6 a[k]-=x;
7 a[k+1]-=x;
8 s1+=x;
9 }
10 void calc2(int k,int x){
11 a[k]-=x;
12 s3+=x;
13 }
14 int main(){
15 scanf("%d",&t);
16 while (t--){
17 scanf("%d",&n);
18 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
19 s1=s2=s3=ans=0;
20 for(int i=1;i<=n;i++){
21 s1=min(s1,a[i]);
22 s2=min(s2,a[i]);
23 int k=max(s1+s2-a[i],0);
24 s1-=k;
25 s2-=k;
26 ans-=k;
27 a[i]-=s1+s2+k;
28 ans+=a[i-1];
29 calc1(i-1,min(a[i-1],a[i]));
30 calc2(i-1,max(a[i-1]-a[i],0));
31 swap(s2,s3);
32 a[i]+=k;
33 }
34 printf("%lld\n",ans+a[n]);
35 }
36 }

[loj3313]序列的更多相关文章

  1. 【夯实PHP基础】UML序列图总结

    原文地址 序列图主要用于展示对象之间交互的顺序. 序列图将交互关系表示为一个二维图.纵向是时间轴,时间沿竖线向下延伸.横向轴代表了在协作中各独立对象的类元角色.类元角色用生命线表示.当对象存在时,角色 ...

  2. Windows10-UWP中设备序列显示不同XAML的三种方式[3]

    阅读目录: 概述 DeviceFamily-Type文件夹 DeviceFamily-Type扩展 InitializeComponent重载 结论 概述 Windows10-UWP(Universa ...

  3. 软件工程里的UML序列图的概念和总结

    俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习! 软件工程的一般开发过程:愿景分析.业务建模,需求分析,健壮性设计,关键设计,最终设计,实现…… 时序图也叫序列图(交互图),属于软件 ...

  4. python序列,字典备忘

    初识python备忘: 序列:列表,字符串,元组len(d),d[id],del d[id],data in d函数:cmp(x,y),len(seq),list(seq)根据字符串创建列表,max( ...

  5. BZOJ 1251: 序列终结者 [splay]

    1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 3778  Solved: 1583[Submit][Status][Discu ...

  6. 最长不下降序列nlogn算法

    显然n方算法在比赛中是没有什么用的(不会这么容易就过的),所以nlogn的算法尤为重要. 分析: 开2个数组,一个a记原数,f[k]表示长度为f的不下降子序列末尾元素的最小值,tot表示当前已知的最长 ...

  7. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  8. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

  9. [LeetCode] Repeated DNA Sequences 求重复的DNA序列

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

随机推荐

  1. 使用率激增250%,这份报告再将 Serverless 推向幕前

    ​ 作者 | 望宸 来源 | Serverless 公众号 相比去年,国外 Serverless 的适用群体在迅速扩大,函数执行时长不断增加,使用方式也越加成熟,开发者工具也更加开放.本文是对 Dat ...

  2. 寻找最佳路径(ArcPy实现)

    一.背景 随着社会经济发展需求,公路的重要性日益提高.在一些交通欠发达的地区,公路建设迫在眉睫.如何根据实际地形情况设计出比较合理的公路规划,是一个值得研究的问题. 二.实验目的: (1)通过练习,熟 ...

  3. MySQL8 根据某属性查询字段排名由自定义变量到rank()的变动

    在mysql8 之前的版本,因为没有rank()方法的存在,所以在对字段进行排名时,使用的是自定义自变量的方法,比如: select id,name,@rank=@rank+1 as ranks fr ...

  4. Java(28)集合三Map

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228436.html 博客主页:https://www.cnblogs.com/testero ...

  5. [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构

    [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 目录 [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 0x00 摘要 0x01 Engine ...

  6. 面试官问:说说你对Java函数式编程的理解

    常见的面试问题 总结一下,在Java程序员的面试中,经常会被问到类似这样的问题: Java中的函数式接口是什么意思? 注解 @FunctionalInterface 的作用是什么? 实现一个函数式接口 ...

  7. Android编译执行envsetup.sh,产生工具命令m、mm、mmm、mmma、tapas 、croot、cgrep、jgrep、 resgrep、godir

    一般来说编译一个sdk或者一个比较大的工程项目,第一步都是执行 envsetup.sh这个脚本,比如编译android,qt源码以及其他一些嵌入式的sdk. 而且执行的时候需要特别注意使用 sourc ...

  8. python mysqlclient安装失败 Command "python setup.py egg_info" failed with error code 1

    python2 python3 中代码 pip install mysqlclient 都安装失败的话, 很有可能是你的操作系统中没有安装mysql 如果确定已经安装了,请忽略下面的内容. Ubunt ...

  9. OAuth 2.0 的探险之旅

    前言 OAuth 2.0 全称是 Open Authorization 2.0, 是用于授权(authorization)的行业标准协议. OAuth 2.0 专注于客户端开发人员的简单性,同时为 W ...

  10. 【数据结构&算法】04-线性表

    目录 前言 线性表的定义 线性表的数据类型&操作 线性表操作 数据类型定义 复杂操作 线性表的顺序存储结构 顺序存储结构的定义 顺序存储方式 数据长度和线性表长度的区别 地址的计算方法 顺序存 ...