[loj2470]有向图
参考ExtremeSpanningTrees,考虑优化整体二分时求$g_{i}\in \{w_{mid},w_{mid+1}\}$的最优解
对于$m=n-1$的问题,不需要去网络流,可以直接树形dp
但为了保证复杂度,我们在整体二分中的复杂度只能是$o(点集大小)$,这样可能就比较麻烦
首先要建出虚树(保留其中lca的点),并预处理出每一个点到深度最小的祖先使得其中边的方向都相同,之后就可以判断相邻两点是否有大小关系
对于$m=n$的问题,可以先暴力枚举基环上的一点,之后按照$m=n-1$的情况去做


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define ll long long
5 #define oo 1e15
6 #define u e[p][k][i]
7 #define y0 y00
8 vector<int>vv,e[2][N];
9 vector<pair<int,int> >ve;
10 int n,m,x,y,x0,y0,d[N],w[N],dfn[N],dep[N],las[N],g[N],fa[N][21],a[N],v[N],st[N],vis[N],bl[N],ans[N];
11 ll sum,f[N][2];
12 bool cmp1(int x,int y){
13 return dfn[x]<dfn[y];
14 }
15 bool cmp2(int x,int y){
16 return bl[x]<bl[y];
17 }
18 int find(int k){
19 if (k==fa[k][0])return k;
20 return fa[k][0]=find(fa[k][0]);
21 }
22 int lca(int x,int y){
23 if (dep[x]<dep[y])swap(x,y);
24 for(int i=20;i>=0;i--)
25 if (dep[fa[x][i]]>=dep[y])x=fa[x][i];
26 if (x==y)return x;
27 for(int i=20;i>=0;i--)
28 if (fa[x][i]!=fa[y][i]){
29 x=fa[x][i];
30 y=fa[y][i];
31 }
32 return fa[x][0];
33 }
34 void dfs(int k,int f,int s){
35 dfn[k]=++x;
36 dep[k]=s;
37 fa[k][0]=f;
38 for(int i=1;i<=20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
39 for(int p=0;p<2;p++)
40 for(int i=0;i<e[p][k].size();i++){
41 if (u==f)continue;
42 las[u]=p;
43 if (p^las[k])g[u]=s;
44 else g[u]=g[k];
45 dfs(u,k,s+1);
46 }
47 }
48 void dp(int k,int fa){
49 vis[k]=1;
50 for(int p=0;p<2;p++)
51 for(int i=0;i<e[p][k].size();i++)
52 if (u!=fa){
53 dp(u,k);
54 f[k][p^1]+=f[u][p^1];
55 f[k][p]+=min(f[u][0],f[u][1]);
56 }
57 }
58 void get_plan(int k,int fa,int type){
59 vis[k]=1;
60 if (type==2)type=(f[k][1]<f[k][0]);
61 bl[k]=type;
62 for(int p=0;p<2;p++)
63 for(int i=0;i<e[p][k].size();i++)
64 if (u!=fa){
65 if (p!=type)get_plan(u,k,type);
66 else get_plan(u,k,2);
67 }
68 }
69 void calc(int l,int r,int x,int y){
70 if (x==y){
71 for(int i=l;i<=r;i++)ans[a[i]]=v[x];
72 return;
73 }
74 sort(a+l,a+r+1,cmp1);
75 st[0]=0;
76 vv.clear();
77 ve.clear();
78 for(int j=l;j<=r;j++){
79 vv.push_back(a[j]);
80 if (!st[0]){
81 st[++st[0]]=a[j];
82 continue;
83 }
84 int k=lca(a[j],st[st[0]]);
85 while ((st[0]>1)&&(dep[k]==dep[lca(a[j],st[st[0]-1])])){
86 ve.push_back(make_pair(st[st[0]-1],st[st[0]]));
87 st[0]--;
88 }
89 if (st[st[0]]!=k){
90 vv.push_back(k);
91 ve.push_back(make_pair(k,st[st[0]]));
92 st[st[0]]=k;
93 }
94 st[++st[0]]=a[j];
95 }
96 for(int i=0;i<vv.size();i++){
97 e[0][vv[i]].clear(),e[1][vv[i]].clear();
98 vis[vv[i]]=f[vv[i]][0]=f[vv[i]][1]=0;
99 }
100 for(;st[0]>1;st[0]--)ve.push_back(make_pair(st[st[0]-1],st[st[0]]));
101 for(int i=0;i<ve.size();i++){
102 int xx=ve[i].first,yy=ve[i].second;
103 if (dep[xx]>=g[yy]){
104 e[las[yy]][xx].push_back(yy);
105 e[las[yy]^1][yy].push_back(xx);
106 }
107 }
108 int mid=(x+y>>1),tot=0;
109 for(int j=l;j<=r;j++){
110 if (a[j]==x0)tot++;
111 if (a[j]==y0)tot++;
112 }
113 if (tot<2){
114 for(int j=l;j<=r;j++){
115 f[a[j]][0]=1LL*abs(d[a[j]]-v[mid])*w[a[j]];
116 f[a[j]][1]=1LL*abs(d[a[j]]-v[mid+1])*w[a[j]];
117 }
118 for(int j=0;j<vv.size();j++)
119 if (!vis[vv[j]])dp(vv[j],0);
120 for(int j=0;j<vv.size();j++)vis[vv[j]]=0;
121 for(int j=0;j<vv.size();j++)
122 if (!vis[vv[j]])get_plan(vv[j],0,2);
123 }
124 else{
125 ll sum0=0,sum1=0;
126 for(int p=0;p<2;p++){
127 for(int j=l;j<=r;j++){
128 f[a[j]][0]=1LL*abs(d[a[j]]-v[mid])*w[a[j]];
129 f[a[j]][1]=1LL*abs(d[a[j]]-v[mid+1])*w[a[j]];
130 }
131 f[x0][p^1]=oo;
132 if (p)f[y0][0]=oo;
133 for(int j=0;j<vv.size();j++)
134 if (!vis[vv[j]]){
135 dp(vv[j],0);
136 if (!p)sum0+=min(f[vv[j]][0],f[vv[j]][1]);
137 else sum1+=min(f[vv[j]][0],f[vv[j]][1]);
138 }
139 for(int j=0;j<vv.size();j++)vis[vv[j]]=0;
140 }
141 if (sum0<sum1){
142 for(int j=l;j<=r;j++){
143 f[a[j]][0]=1LL*abs(d[a[j]]-v[mid])*w[a[j]];
144 f[a[j]][1]=1LL*abs(d[a[j]]-v[mid+1])*w[a[j]];
145 }
146 f[x0][1]=oo;
147 for(int j=0;j<vv.size();j++)
148 if (!vis[vv[j]])dp(vv[j],0);
149 for(int j=0;j<vv.size();j++)vis[vv[j]]=0;
150 }
151 for(int j=0;j<vv.size();j++)
152 if (!vis[vv[j]])get_plan(vv[j],0,2);
153 }
154 sort(a+l,a+r+1,cmp2);
155 for(int j=l;j<=r+1;j++)
156 if ((j>r)||(bl[a[j]])){
157 if (l<j)calc(l,j-1,x,mid);
158 if (j<=r)calc(j,r,mid+1,y);
159 return;
160 }
161 }
162 int main(){
163 scanf("%d%d",&n,&m);
164 for(int i=1;i<=n;i++)scanf("%d",&d[i]);
165 for(int i=1;i<=n;i++)scanf("%d",&w[i]);
166 for(int i=1;i<=n;i++)fa[i][0]=i;
167 for(int i=1;i<=m;i++){
168 scanf("%d%d",&x,&y);
169 if (find(x)==find(y))x0=x,y0=y;
170 else{
171 fa[x][0]=find(y);
172 e[0][x].push_back(y);
173 e[1][y].push_back(x);
174 }
175 }
176 x=0;
177 dfs(1,1,0);
178 memcpy(v,d,sizeof(v));
179 sort(v+1,v+n+1);
180 int nn=unique(v+1,v+n+1)-v-1;
181 for(int i=1;i<=n;i++)a[dfn[i]]=i;
182 calc(1,n,1,nn);
183 for(int i=1;i<=n;i++)sum+=1LL*w[i]*abs(d[i]-ans[i]);
184 printf("%lld",sum);
185 }
[loj2470]有向图的更多相关文章
- Kosaraju 算法检测有向图的强连通性
给定一个有向图 G = (V, E) ,对于任意一对顶点 u 和 v,有 u --> v 和 v --> u,亦即,顶点 u 和 v 是互相可达的,则说明该图 G 是强连通的(Strong ...
- POJ 2337 Catenyms(有向图的欧拉通路)
题意:给n个字符串(3<=n<=1000),当字符串str[i]的尾字符与str[j]的首字符一样时,可用dot连接.判断用所有字符串一次且仅一次,连接成一串.若可以,输出答案的最小字典序 ...
- code forces 383 Arpa's loud Owf and Mehrdad's evil plan(有向图最小环)
Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- hdu1269迷宫城堡(判断有向图是否是一个强连通图)
1 /* 题意: 给你一个图,求这个有向图示否是一个强连通图(每两个节点都是可以相互到达的)! 思路1:按正向边dfs一遍,将经过的节点计数,如果记录的节点的个数小于n,那么就说明图按照正向边就不是连 ...
- poj 1386 Play on Words(有向图欧拉回路)
/* 题意:单词拼接,前一个单词的末尾字母和后一个单词的开头字母相同 思路:将一个单词的开头和末尾单词分别做两个点并建一条有向边!然后判断是否存在欧拉回路或者欧拉路 再次强调有向图欧拉路或欧拉回路的判 ...
- NYOJ 99单词拼接(有向图的欧拉(回)路)
/* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...
- 邻接表有向图(三)之 Java详解
前面分别介绍了邻接表有向图的C和C++实现,本文通过Java实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http:/ ...
- 邻接表有向图(二)之 C++详解
本章是通过C++实现邻接表有向图. 目录 1. 邻接表有向图的介绍 2. 邻接表有向图的代码说明 3. 邻接表有向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywa ...
随机推荐
- 8.JVM内存分配机制超详细解析
一.对象的加载过程 之前研究过类的加载过程.具体详情可查看文章:https://www.cnblogs.com/ITPower/p/15356099.html 那么,当一个对象被new的时候,是如何加 ...
- WinForm 控件 DataGridView 常用操作
1.取消列自动生成 在窗体load事件里面设置表格dataGridView的AutoGenerateColumns为 false dataGridView.AutoGenerateColumns = ...
- java 文档自动生成的神器 idoc
写文档 作为一名开发者,每个人都要写代码. 工作中,几乎每一位开发者都要写文档. 因为工作是人和人的协作,产品要写需求文档,开发要写详细设计文档,接口文档. 可是,作为一个懒人,平时最讨厌的一件事情就 ...
- codeforces316E3 Summer Homework(线段树,斐波那契数列)
题目大意 给定一个n个数的数列,m个操作,有三种操作: \(1\ x\ v\) 将\(a_x\)的值修改成v $2\ l\ r\ $ 求 \(\sum_{i=l}^r x_i*f_{i-l}\) 其中 ...
- Golang通脉之接口
接口(interface)定义了一个对象的行为规范,只定义规范不实现,由具体的对象来实现规范的细节. 接口类型 在Go语言中接口(interface)是一种类型,一种抽象的类型. interface是 ...
- ORA-19815: WARNING: db_recovery_file_dest_size闪回区爆满问题处理
问题描述:有一个数据库起不来了,根据层层排查,是因为归档设置在了闪回区,文件的大小已经超出了闪回区限制.最后直接给数据库拖挂 环境:windows server2012 , oracle 19c,单机 ...
- vue3.x移动端适配px2rem
1.什么是px2rem px2rem是一个插件能将px自动转换为rem,以适配各种不同的屏幕尺寸.前端开发可以直接使用设计稿量出的尺寸或者蓝湖给出的px进行布局,这样极大的提高了开发效率. 2.前提条 ...
- AGC019F
题目大意 $n$ + $m$ 个问题,其中$n$ 个答案是$YES$,$m$个是$NO$的,你依次答题,每答一道,就可以立刻知道这道题的答案,求在最优策略下答错次数的期望,对$998244353$取模 ...
- Manacher(马拉车)
Able was I ere I saw Elba. ----Napoléon Bonaparte(拿破仑) 一.回文串&回文子串 这个很好理解. 如果一个字符串正着读和反着读是一 ...
- 今天学习了BootStrap
今天学习了BootStrap 一.BootStrap介绍 Bootstrap是一个前端开发的框架,来自 Twitter,是目前很受欢迎的前端框架.Bootstrap 是基于 HTML.CSS.Java ...