话说学机器学习,不写代码就太扯淡了。好了,接着上一次的线性回归作业。

hw1作业的链接在这: http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw1.pdf

作业是预测台湾的PM2.5的指数,既然是回归问题,肯定是用的是上一节课的线性回归了。

以上数据我传到https://pan.baidu.com/s/1dFhwT13 上面了,供有兴趣的人做做。

实际上上述中分为训练数据和测试数据,都是CSV格式的,而且只用到PM2.5有用,其他的没什么用,同时通过测试数据才知道,

其实就是用前9个小时的PM2.5数据作为特征,来预测第10个小时的数据,将第10个小时的数据保存为csv格式,作为预测结果。

好了,不多说,上代码。我的开发环境还是win7+pycharm4.0

第一步,读取train.csv. 获取PM2.5的训练数据 ,一共240个训练数据,将前9个小时的数据作为特征,将第10个小时的数据作为标签

 # -*- coding:UTF-8 -*-
__author__ = 'tao' import csv
import cv2
import sys
import numpy as np
import math filename = 'F:/台湾机器学习/data/train.csv'
ufilename = unicode(filename , "utf8") #这一块主要是因为汉字路径 也就是python调用open打开文件时,其路径必须要转换为utf-8格式
list=[]
result=[]
row=0
colum=0;
with open(ufilename, 'r') as f:
data = f.readlines() #dat中所有字符串读入data
for line in data:
odom = line.split(',') #将单个数据分隔开存好
colum=len(odom)
if 'PM2.5'in odom:
lists= map(int, odom[3:12])#第三个开始开始数据 一直取9个数
results= map(int, odom[12:13])#取第10个数
list.append(lists)
result.append(results)
# print odom
row=row+1 #print("原始数据是:{0}行 :{1}列 的数据".format(row, colum))
print("有{0}个训练数据".format(len(list)))

第二步,利用梯度下降来训练权值和偏置。

#y=w0*x0+w1*x1+w2*x2+w3*x3+w4*x4+w5*x5+w6*x6+w7*x7+w8*x8+b0
# alpha=0.0001
b_0=np.random.rand(1,1)
th_0 = np.random.rand(1,1);
th_1 = np.random.rand(1,1);
th_2 = np.random.rand(1,1);
th_3 = np.random.rand(1,1);
th_4= np.random.rand(1,1);
th_5 = np.random.rand(1,1);
th_6 = np.random.rand(1,1);
th_7 = np.random.rand(1,1);
th_8 = np.random.rand(1,1);
for k in range(1000):
length = len(list)
jtheta = 0
total = 0
sum_total = 0
for id in range(length):
# print("当前序号{0}训练数据".format(id))
xset= np.array(list[id]) #一行 X数值
yset= np.array(result[id]) # 要估计值
total = total + b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]- yset
# print( "当前误差{0}".format(b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]- yset))
tmpb0 = b_0 - alpha/length*(total)
tmp0 = th_0 - alpha/length*(total)*xset[0]
tmp1 = th_1 - alpha/length*(total)*xset[1]
tmp2 = th_2 - alpha/length*(total)*xset[2]
tmp3 = th_3 - alpha/length*(total)*xset[3]
tmp4 = th_4 - alpha/length*(total)*xset[4]
tmp5 = th_5 - alpha/length*(total)*xset[5]
tmp6 = th_6 - alpha/length*(total)*xset[6]
tmp7 = th_7 - alpha/length*(total)*xset[7]
tmp8 = th_8 - alpha/length*(total)*xset[8]
b_0 = tmpb0
th_0 = tmp0
th_1 = tmp1
th_2 = tmp2
th_3 = tmp3
th_4 = tmp4
th_5 = tmp5
th_6 = tmp6
th_7 = tmp7
th_8 = tmp8
sum_total = sum_total + b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8] - yset
jtheta_1 = 0.5 * length * math.pow(sum_total,2)
comp = math.fabs(jtheta_1 - jtheta)
if id==length-1:
print "%10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f \n" %(comp,jtheta * dgree,b_0,th_0,th_1,th_2,th_3,th_4,th_5,th_6,th_7,th_8)
jtheta = jtheta_1
#
print("-训练得到的权值如下--")
print " %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f \n" %(b_0,th_0,th_1,th_2,th_3,th_4,th_5,th_6,th_7,th_8)

第三步,测试训练集。这个可以不需要,是我调试过程中看,对训练集的预测精度怎么样?

 #测试训练集
for k in range(len(list)):
xset = np.array(list[k])
nptresult= np.array(result[k])
# print(xset)
# print("预测数据{0}".format( b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]))
# print("真实数据{0}".format(nptresult))
error= b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]-nptresult
print("训练集的实际误差{0}".format(error))

第四步,运行测试集,并保存测试结果。

首先读取测试集的数据,和训练集一样

 #读取测试集数据
testfilename = 'F:/台湾机器学习/data/test_X.csv'
utestfilename = unicode(testfilename , "utf8") #这一块主要是因为汉字路径 也就是python调用open打开文件时,其路径必须要转换为utf-8格式
testlist=[]
testrow=0
testcolum=0;
with open(utestfilename, 'r') as f:
data = f.readlines() #dat中所有字符串读入data
for line in data:
odom = line.split(',') #将单个数据分隔开存好
colum=len(odom)
if 'PM2.5'in odom:
testlists= map(int, odom[2:11])#第三个开始开始数据 一直取9个数
testlist.append(testlists)
# print odom
testrow=row+1 print("测试数据是:{0}行 :{1}列 的数据".format(testrow, testcolum))
print("有{0}个测试数据".format(len(testlist)))
print(testlist)

保存预测结果到csv文件中:

 #输出最后的测试结果
csvfile = file('d:\\csv_result.csv', 'wb')
writer = csv.writer(csvfile)
writer.writerow(['id', 'value'])
for k in range(len(testlist)):
id_list=[]
xset = np.array(testlist[k])
result= b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]
int_result = int(result)
if(int_result<0):
int_result=0
id_list = [('id_{0}'.format(k), '{0}'.format(int_result))]
print(id_list)
writer.writerows(id_list)
csvfile.close()

完整的程序:

 # -*- coding:UTF-8 -*-
__author__ = 'tao' import csv
import cv2
import sys
import numpy as np
import math filename = 'F:/台湾机器学习/data/train.csv'
ufilename = unicode(filename , "utf8") #这一块主要是因为汉字路径 也就是python调用open打开文件时,其路径必须要转换为utf-8格式
list=[]
result=[]
row=0
colum=0;
with open(ufilename, 'r') as f:
data = f.readlines() #dat中所有字符串读入data
for line in data:
odom = line.split(',') #将单个数据分隔开存好
colum=len(odom)
if 'PM2.5'in odom:
lists= map(int, odom[3:12])#第三个开始开始数据 一直取9个数
results= map(int, odom[12:13])#取第10个数
list.append(lists)
result.append(results)
# print odom
row=row+1 #print("原始数据是:{0}行 :{1}列 的数据".format(row, colum))
print("有{0}个训练数据".format(len(list))) #y=w0*x0+w1*x1+w2*x2+w3*x3+w4*x4+w5*x5+w6*x6+w7*x7+w8*x8+b0
# alpha=0.0001
b_0=np.random.rand(1,1)
th_0 = np.random.rand(1,1);
th_1 = np.random.rand(1,1);
th_2 = np.random.rand(1,1);
th_3 = np.random.rand(1,1);
th_4= np.random.rand(1,1);
th_5 = np.random.rand(1,1);
th_6 = np.random.rand(1,1);
th_7 = np.random.rand(1,1);
th_8 = np.random.rand(1,1);
for k in range(1000):
length = len(list)
jtheta = 0
total = 0
sum_total = 0
for id in range(length):
# print("当前序号{0}训练数据".format(id))
xset= np.array(list[id]) #一行 X数值
yset= np.array(result[id]) # 要估计值
total = total + b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]- yset
# print( "当前误差{0}".format(b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]- yset))
tmpb0 = b_0 - alpha/length*(total)
tmp0 = th_0 - alpha/length*(total)*xset[0]
tmp1 = th_1 - alpha/length*(total)*xset[1]
tmp2 = th_2 - alpha/length*(total)*xset[2]
tmp3 = th_3 - alpha/length*(total)*xset[3]
tmp4 = th_4 - alpha/length*(total)*xset[4]
tmp5 = th_5 - alpha/length*(total)*xset[5]
tmp6 = th_6 - alpha/length*(total)*xset[6]
tmp7 = th_7 - alpha/length*(total)*xset[7]
tmp8 = th_8 - alpha/length*(total)*xset[8]
b_0 = tmpb0
th_0 = tmp0
th_1 = tmp1
th_2 = tmp2
th_3 = tmp3
th_4 = tmp4
th_5 = tmp5
th_6 = tmp6
th_7 = tmp7
th_8 = tmp8
sum_total = sum_total + b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8] - yset
jtheta_1 = 0.5 * length * math.pow(sum_total,2)
comp = math.fabs(jtheta_1 - jtheta)
if id==length-1:
print "%10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f \n" %(comp,jtheta * dgree,b_0,th_0,th_1,th_2,th_3,th_4,th_5,th_6,th_7,th_8)
jtheta = jtheta_1
#
print("-训练得到的权值如下--")
print " %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f \n" %(b_0,th_0,th_1,th_2,th_3,th_4,th_5,th_6,th_7,th_8) #测试训练集
for k in range(len(list)):
xset = np.array(list[k])
nptresult= np.array(result[k])
# print(xset)
# print("预测数据{0}".format( b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]))
# print("真实数据{0}".format(nptresult))
error= b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]-nptresult
print("训练集的实际误差{0}".format(error)) #读取测试集数据
testfilename = 'F:/台湾机器学习/data/test_X.csv'
utestfilename = unicode(testfilename , "utf8") #这一块主要是因为汉字路径 也就是python调用open打开文件时,其路径必须要转换为utf-8格式
testlist=[]
testrow=0
testcolum=0;
with open(utestfilename, 'r') as f:
data = f.readlines() #dat中所有字符串读入data
for line in data:
odom = line.split(',') #将单个数据分隔开存好
colum=len(odom)
if 'PM2.5'in odom:
testlists= map(int, odom[2:11])#第三个开始开始数据 一直取9个数
testlist.append(testlists)
# print odom
testrow=row+1 print("测试数据是:{0}行 :{1}列 的数据".format(testrow, testcolum))
print("有{0}个测试数据".format(len(testlist)))
print(testlist) #输出最后的测试结果
csvfile = file('d:\\csv_result.csv', 'wb')
writer = csv.writer(csvfile)
writer.writerow(['id', 'value'])
for k in range(len(testlist)):
id_list=[]
xset = np.array(testlist[k])
result= b_0 + th_0 * xset[0]+ th_1 * xset[1]+ th_2 * xset[2]+ th_3 * xset[3]+ th_4 * xset[4]+ th_5 * xset[5]+ th_6 * xset[6]+ th_7 * xset[7]+ th_8 * xset[8]
int_result = int(result)
if(int_result<0):
int_result=0
id_list = [('id_{0}'.format(k), '{0}'.format(int_result))]
print(id_list)
writer.writerows(id_list)
csvfile.close()

又试了试 batch gradual descent,貌似没发现什么新的东西

#y=w0*x0+w1*x1+w2*x2+w3*x3+w4*x4+w5*x5+w6*x6+w7*x7+w8*x8+b0
#
alpha=0.0001
b_0=np.random.rand(1,1)
th = np.random.rand(1,9);
batch=20
for k in range(5000):
length = len(list)
jtheta = 0
total = 0
sum_total = 0
count=0
for j in range(batch): #batch
# print("当前序号{0}训练数据".format(id))
xset= np.array(list[j+count*batch]) #一行 X数值
yset= np.array(result[j+count*batch]) # 要估计值
total = total+b_0 +np.dot(th,xset)- yset
# print( "当前误差{0}".format(b_0 +np.dot(th,xset)- yset))
b_0 = b_0 - alpha/batch*(total)
th = th - alpha/batch*(total)*xset
count = count +1
if(count>=len(list)/batch):
break;
if(j==batch-1):
print " %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f \n" %(b_0,th[0][0],th[0][1],th[0][2],th[0][3],th[0][4],th[0][5],th[0][6],th[0][7],th[0][8]) #
print("-训练得到的权值如下--")
print" %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f %10.5f \n" %(b_0,th[0][0],th[0][1],th[0][2],th[0][3],th[0][4],th[0][5],th[0][6],th[0][7],th[0][8])

机器学习 1 linear regression 作业的更多相关文章

  1. 机器学习 1 linear regression 作业(二)

    这个线性回归的作业需要上传到https://inclass.kaggle.com/c/ml2016-pm2-5-prediction 上面,这是一个kaggle比赛的网站.第一次接触听说这个东西,恰好 ...

  2. Andrew Ng机器学习编程作业: Linear Regression

    编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...

  3. 从零单排入门机器学习:线性回归(linear regression)实践篇

    线性回归(linear regression)实践篇 之前一段时间在coursera看了Andrew ng的机器学习的课程,感觉还不错,算是入门了. 这次打算以该课程的作业为主线,对机器学习基本知识做 ...

  4. ufldl学习笔记与编程作业:Linear Regression(线性回归)

    ufldl学习笔记与编程作业:Linear Regression(线性回归) ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些 ...

  5. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  6. Stanford机器学习---第一讲. Linear Regression with one variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7691571 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  7. Coursera台大机器学习课程笔记8 -- Linear Regression

    之前一直在讲机器为什么能够学习,从这节课开始讲一些基本的机器学习算法,也就是机器如何学习. 这节课讲的是线性回归,从使Ein最小化出发来,介绍了 Hat Matrix,要理解其中的几何意义.最后对比了 ...

  8. 机器学习之多变量线性回归(Linear Regression with multiple variables)

    1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量 ...

  9. 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent

    最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...

随机推荐

  1. 在java中如何用键盘输入一个数,字符,字符串

    一,利用 Scanner 实现从键盘读入integer或float 型数据 import java.util.*; public class test { public static void mai ...

  2. Building Modern Web Apps-构建现代的 Web 应用程序(一些感想)

    <iframe src="http://channel9.msdn.com/Series/MVA-China/Web20140611A01/player?h=540&w=960 ...

  3. .NET面试题系列[14] - LINQ to SQL与IQueryable

    .NET面试题系列目录 名言警句 "理解IQueryable的最简单方式就是,把它看作一个查询,在执行的时候,将会生成结果序列." - Jon Skeet LINQ to Obje ...

  4. 小菜学习设计模式(五)—控制反转(Ioc)

    写在前面 设计模式目录: 小菜学习设计模式(一)—模板方法(Template)模式 小菜学习设计模式(二)—单例(Singleton)模式 小菜学习设计模式(三)—工厂方法(Factory Metho ...

  5. 学习设计模式第二十七 - GoF之外简单工厂模式

    示例代码来自<深入浅出设计模式>和<大话设计模式> 概述 简单工厂模式又被称为静态工厂模式,属于类的创建型模式.其实质是由一个工厂类根据传入的参量,动态决定应该创建出哪一个产品 ...

  6. Linux下的.NET之旅:第一站,CentOS+Mono+Xsp构建最简单的ASP.NET服务器

    一.Mono产生的背景 由于Linux/Unix等有更强的安全性.运行效率高.拥有大量优秀的开源组件,而.Net则有着其他语言无与伦比的开发效率,因此在非微软平台下运行.Net程序的需求很强烈.Mon ...

  7. Copy 与MutableCopy的区别

    NSString *string = @"origion"; NSString *stringCopy = [string copy]; NSMutableString *stri ...

  8. LeetCode Note 1st,practice makes perfect

    1. Two Sum Given an array of integers, return indices of the two numbers such that they add up to a ...

  9. js事件(event)的运行原理

    昨天写click事件时候突然脑袋抽筋想了想浏览器是怎么执行click事件的,为什么我们可以用e或者window.event这个对象获取一些事件的属性呐?以下是我的理解.如果您有更好的理解,欢迎评论!! ...

  10. Jenkins的Windows Slave分布式构建和部署

    1.新建的Slave:系统管理-->管理节点-->新建节点 远程工作目录 即是 节点服务器 站点文件存放目录 在配置节点时 启动方法 配置的选项中的 Launch agent via Ja ...