三维动画形变算法(Gradient-Based Deformation)
将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场。该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化。那么当用户拖拽网格上的控制点集时,网格形变问题即变为求解以下式子:
根据变分法,上式最小化即求解泊松方程:
其中Φ为待求的网格形变后坐标,w为网格形变后的梯度场。
上式可以进一步表示为求解稀疏线性方程组:
其中L为网格的拉普拉斯算子,b为梯度场w在网格顶点处的散度值。
问题的关键是如何得到网格形变后的梯度场w,文章[Yu et al. 2004]提到其是通过由控制点集变换的加权运算得到,并且提出了几种不同的加权方式(线性加权,高斯加权等)。另外文章[Zayer et al. 2005]中提到可以在网格内构建一个调和场作为加权系数。
1.离散梯度算子定义:
假设f是一个分片线性函数,在网格的每个三角片{xi,xj,xk}的顶点处有f(xi)=fi,f(xj)=fj,f(xk)=fk,通过线性插值可以知道f在三角片上每一点处的值为:
这样f的梯度如下:
其中基函数Φi,Φj,Φk满足Φi+Φj+Φk=1,那么它们梯度之和▽Φi+▽Φj+▽Φk=0。所以f的梯度可以写成如下形式:
经简单计算可以求得▽Φi的表达式是,同样也可以写出▽Φj、▽Φk的表达式,其中⊥表示将向量逆时针旋转90度,A表示三角片的面积。
2.离散散度算子定义:
设向量值函数w:S→R3,S表示网格,w表示在每个三角片上的向量,那么w在顶点xi处的散度可以定义为:
其中T(xi)表示顶点xi的1环邻域三角片,AT表示三角片T的面积。
3.离散Laplace算子定义:
将梯度算子表达式代入散度算子表达式可以得到顶点xi处的Laplace算子如下形式:
其中N(xi)表示顶点xi的1环邻域点。
效果:
本文为原创,转载请注明出处:http://www.cnblogs.com/shushen。
参考文献:
[1] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum. "Mesh Editing with Poisson-Based Gradient Field Manipulation." ACM Transactions on Graphics (Proc. SIGGRAPH) 23:3 (2004), 644-51.
[2] R. Zayer, C. Rossl, Z. Karni, and H.-P. Seidel. "Harmonic Guidance for Surface Deformation." Computer Graphics Forum (Proc. Eurographics) 24:3 (2005), 601-10.
[3] 许栋. 微分网格处理技术[D]. 浙江大学, 2006.
[4] 刘昌森. 三角网格曲面上的laplace算子及其应用[D]. 中国科学技术大学, 2012.
三维动画形变算法(Gradient-Based Deformation)的更多相关文章
- 三维动画形变算法(Laplacian-Based Deformation)
网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...
- 三维动画形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)
在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...
- 三维动画形变算法(Mixed Finite Elements)
混合有限元方法通入引入辅助变量后可以将高阶微分问题变成一系列低阶微分问题的组合.在三维网格形变问题中,我们考虑如下泛函极值问题: 其中u: Ω0 → R3是变形体的空间坐标,上述泛函极值问题对应的欧拉 ...
- 三维网格形变算法(Laplacian-Based Deformation)
网格上顶点的Laplace坐标(均匀权重)定义为:,其中di为顶点vi的1环邻域顶点数. 网格Laplace坐标可以用矩阵形式表示:△=LV,其中,那么根据网格的Laplace坐标通过求解稀疏线性方程 ...
- 高阶Laplace曲面形变算法(Polyharmonic Deformation)
数学上曲面的连续光滑形变可以通过最小化能量函数来建模得到,其中能量函数用来调节曲面的拉伸或弯曲程度,那么能量函数最小化同时满足所有边界条件的最优解就是待求曲面. 能量函数通常是二次函数形式: 其中S* ...
- 三维网格形变算法(Gradient-Based Deformation)
将三角网格上的顶点坐标(x,y,z)看作3个独立的标量场,那么网格上每个三角片都存在3个独立的梯度场.该梯度场是网格的微分属性,相当于网格的特征,在形变过程中随控制点集的移动而变化.那么当用户拖拽网格 ...
- 在图层上使用CATransform3D制做三维动画-b
在UIView上,我们可以使用CGAffineTransform来对视图进行:平移(translation),旋转(Rotation),缩 放(scale),倾斜(Invert)操作,但这些操作是没有 ...
- Camera三维动画
一.概述 在Android中说到3D开发,我们首先想到的是OpenGL,但用起来比较复杂繁琐,不适合做应用级别的3D变换.Android为我们提供了一个简化版的3D开发入口:Camera(这里的Cam ...
- 三维网格形变算法(Linear rotation-invariant coordinates和As-Rigid-As-Possible)
在三维网格形变算法中,个人比较喜欢下面两个算法,算法的效果都比较不错, 不同的是文章[Lipman et al. 2005]算法对控制点平移不太敏感.下面分别介绍这两个算法: 文章[Lipman et ...
随机推荐
- 万能RecyclerView的数据适配器BaseRecyclerViewAdapterHelper
今天楼主才发现github上有这么一个好用的开源代码,充满好奇心的楼主马上使用了,特地分享给大家. 此项目的github地址: https://github.com/CymChad/BaseRecyc ...
- C#2.0新增功能03 匿名方法
连载目录 [已更新最新开发文章,点击查看详细] 在 2.0 之前的 C# 版本中,声明委托的唯一方式是使用命名方法. C# 2.0 引入匿名方法,在 C# 3.0 及更高版本中,Lambda 表 ...
- jsp定义全局变量:读取properties文件
<%java.util.Properties prop = new java.util.Properties();java.io.InputStream in;in = getClass().g ...
- 基于V2EX API的nodejs组件.
今天又学习到了新的知(zi)识(shi),来给自己做个笔录,也算在这酷热的天气里给自己写了一篇降温的‘膏药’,话就讲这么多了 ,start off...... 首先 ,依赖选择: /**设置为严格模式 ...
- Jquery第二次考核
1. 名词解释 实例对象:var p1=new Person(); p1就是实例对象 构造:function Person(){} 原型对象:在 JavaScript 中,每当定义一个对象(函数也是 ...
- Jibx 只绑定需要的字段
栗子: binding.xml <?xml version="1.0" encoding="UTF-8"?> <binding&g ...
- Mac Android 配置环境变量
进入终端,输入以下命令: cd ~ touch .bash_profile //没有该文件的话新建一个 vi .bash_profile //vim 形式打开 输入内容jdk变量配置内容: expor ...
- H3C模拟器单臂路由配置实例
单臂路由:用802.1Q和子接口实现VLAN间路由 单臂路由利用trunk链路允许多个VLAN的数据帧通过而实现 网络拓扑图: RTA配置: SW1配置: PC1/2配置如图: 但是值得注意的是,在配 ...
- ContentProvider 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- java常见面试题目(一)
在大四实习阶段,秋招的时候,面试了很多家公司,总结常见的java面试题目:(答案可以自己百度) 1.你所用oracle的版本号是多少? 2.tomcat修改8080端口号的配置文件是哪个? 3.myb ...