题目描述

一棵根为1 的树,每条边上有一个字符(a-v共22种)。 一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串。 求每个子树中最长的Dokhtar-kosh路径的长度。

思路

  不多的只能用树上启发式合并做的题。。。虽然算法很暴力,但是本题还是挺难想的。

  考虑一共只有22种不同的边权,我们要找的是经过重新排序后回文的路径,也就是说:为偶数时,必须有两两相同的;为奇数时,最多只能有一个多出来的。那么我们考虑状压,对第$i$种边权压成$1<<i-1$,这样我们找的路径就变成了:路径上所有边的异或和为0或者为22中状态的一种。(为什么要状压呢?随便举几个栗子就知道了)

  我们先处理出$d[i]表示i到根的异或和,那么任意路径(u,v)的异或和就是d[u] \oplus d[v],暴力统计时,我们先遍历一棵轻儿子,遍历完后再把轻儿子的贡献加入桶中,这样就可以做到让u变成此次暴力的lca,于是我们在now结点的子树中遍历到(u,v)时,先统计桶中有没有d[u],这样异或起来为0,再统计有没有和d[u]异或起来为2^i$的即可。

code

#include<bits/stdc++.h>
#define I inline
using namespace std;
const int N=;
const int inf=(<<)-;
int val[N],n;
struct node
{
int to,nxt,w;
}g[N];
int head[N],cnt; int d[N],sz[N],son[N],Son,buk[<<],now,dep[N],ans[N]; I int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} I void addedge(int u,int v,int w)
{
g[++cnt].nxt=head[u];
g[cnt].to=v;
g[cnt].w=w;
head[u]=cnt;
} I void get_son(int u)
{
sz[u]=;
for(int i=head[u];i;i=g[i].nxt)
{
int v=g[i].to,w=g[i].w;
d[v]=d[u]^w;dep[v]=dep[u]+;
get_son(v);
sz[u]+=sz[v];
if(sz[v]>sz[son[u]])son[u]=v;
}
} I void init(int u)
{
buk[d[u]]=-inf;
for(int i=head[u];i;i=g[i].nxt)init(g[i].to);
} I void get(int u)
{
ans[now]=max(ans[now],dep[u]+buk[d[u]]);
for(int i=;i<=;i++)ans[now]=max(ans[now],dep[u]+buk[(<<i)^d[u]]);
for(int i=head[u];i;i=g[i].nxt)
{
int v=g[i].to;get(v);
}
} I void add(int u)
{
buk[d[u]]=max(buk[d[u]],dep[u]);
for(int i=head[u];i;i=g[i].nxt)
{
int v=g[i].to;add(v);
}
} I void dfs(int u,bool op)
{
for(int i=head[u];i;i=g[i].nxt)
{
int v=g[i].to;
if(v==son[u])continue;
dfs(v,);
}
if(son[u])dfs(son[u],),Son=son[u];
now=u;
for(int i=head[u];i;i=g[i].nxt)
{
int v=g[i].to;
if(v==Son)continue;
get(v);add(v);
}
buk[d[u]]=max(buk[d[u]],dep[u]);
ans[u]=max(ans[u],buk[d[u]]+dep[u]);
for(int i=;i<=;i++)ans[u]=max(ans[u],dep[u]+buk[(<<i)^d[u]]);
ans[u]-=dep[u]<<;
for(int i=head[u];i;i=g[i].nxt)
{
int v=g[i].to;
ans[u]=max(ans[u],ans[v]);
}
if(!op)init(u);
} int main()
{
n=read();
memset(buk,,sizeof(buk));
for(int i=;i<=n;i++)
{
int x=read();
char ch=getchar();
while(ch<'a'||ch>'v')ch=getchar();
addedge(x,i,(<<(ch-'a')));
d[i]=<<(ch-'a');
}
get_son();
dfs(,);
for(int i=;i<=n;i++)printf("%d ",ans[i]);
}

CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths——dsu on tree的更多相关文章

  1. CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]

    D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...

  2. [Codeforces741D]Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths——dsu on tree

    题目链接: Codeforces741D 题目大意:给出一棵树,根为$1$,每条边有一个$a-v$的小写字母,求每个点子树中的一条最长的简单路径使得这条路径上的边上的字母重排后是一个回文串. 显然如果 ...

  3. Codeforces.741D.Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree 思路)

    题目链接 \(Description\) 给定一棵树,每条边上有一个字符(a~v).对每个节点,求它的子树中一条最长的路径,满足 路径上所有边上的字符可以重新排列成一个回文串.输出其最长长度. \(n ...

  4. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths (dsu on tree) 题解

    先说一下dsu算法. 例题:子树众数问题. 给出一棵树,每个点有点权,求每个子树中出现次数最多的数的出现次数. 树的节点数为n,\(n \leq 500000\) 这个数据范围,\(O(n \sqrt ...

  5. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    题目链接:Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 第一次写\(dsu\ on\ tree\),来记录一下 \(dsu\ o ...

  6. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  7. [探究] dsu on tree,一类树上离线问题的做法

    dsu on tree. \(\rm 0x01\) 前言\(\&\)技术分析 \(\bold{dsu~on~tree}\),中文别称"树上启发式合并"(虽然我并不承认这种称 ...

  8. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 好像这个题只能Dsu On Tree? 有根树点分治 统计子树过x的 ...

  9. 【DSU on tree】【CF741D】Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    Description 给定一棵 \(n\) 个节点的树,每条边上有一个字符,字符集大小 \(22\),求每个节点的子树内最长的简单路径使得路径上的字符经过重排后构成回文串. Limitation \ ...

随机推荐

  1. httprouter框架 (Gin使用的路由框架)

    之前在Gin中已经说到, Gin比Martini的效率高好多耶, 究其原因是因为使用了httprouter这个路由框架, httprouter的git地址是: httprouter源码. 今天稍微看了 ...

  2. 美化你的IDEA—背景图片

    IDEA设置背景图片 很多人都不知道IDEA可以像桌面一样设置背景图片,下面我们来美化我们的开发工具. 有的IDEA版本是搜不到的,我这个就是,现在搜的是已经装好的. 没有的我们可以去http://p ...

  3. JVM垃圾回收(下)

    接着上一篇,介绍完了 JVM 中识别需要回收的垃圾对象之后,这一篇我们来说说 JVM 是如何进行垃圾回收. 首先要在这里介绍一下80/20 法则: 约仅有20%的变因操纵着80%的局面.也就是说:所有 ...

  4. Windows系统调用中API从3环到0环(下)

     Windows内核分析索引目录:https://www.cnblogs.com/onetrainee/p/11675224.html Windows系统调用中API从3环到0环(下) 如果对API在 ...

  5. 域渗透-凭据传递攻击(pass the hash)完全总结

    总结下PtH具体形式(wmicexec.powershell.msf等) 0x01 PtH攻击原理 && 黄金白银票据 PtH攻击原理 wiki  https://en.wikiped ...

  6. CTF-SSH私钥泄露渗透

    环境 Kali ip 192.168.56.102 Smb 靶机ip 192.168.56.104 0x01信息探测 使用netdiscover -r ip/mask 进行内网网段存活ip探测 靶机为 ...

  7. PHP array_replace_recursive

    1.函数的作用:比较键值,递归的替代数组中的元素 2.函数的参数: @params array $array1 @params array $array2 @params array $array3 ...

  8. Spring Boot2 系列教程(十四)CORS 解决跨域问题

    今天和小伙伴们来聊一聊通过CORS解决跨域问题. 同源策略 很多人对跨域有一种误解,以为这是前端的事,和后端没关系,其实不是这样的,说到跨域,就不得不说说浏览器的同源策略. 同源策略是由 Netsca ...

  9. luogu P4035 [JSOI2008]球形空间产生器

    [返回模拟退火略解] 题目描述 今有 n+1n+1n+1 个 nnn 维的点,它们都在一个球上.求它们所在球的球心. Solution 4035\text{Solution 4035}Solution ...

  10. 【Java必修课】ArrayList与HashSet的contains方法性能比较(JMH性能测试)

    1 简介 在日常开发中,ArrayList和HashSet都是Java中很常用的集合类. ArrayList是List接口最常用的实现类: HashSet则是保存唯一元素Set的实现. 本文主要对两者 ...