问题

(1)ReentrantLock有哪些优点?

(2)ReentrantLock有哪些缺点?

(3)ReentrantLock是否可以完全替代synchronized?

简介

synchronized是Java原生提供的用于在多线程环境中保证同步的关键字,底层是通过修改对象头中的MarkWord来实现的。

ReentrantLock是Java语言层面提供的用于在多线程环境中保证同步的类,底层是通过原子更新状态变量state来实现的。

既然有了synchronized的关键字来保证同步了,为什么还要实现一个ReentrantLock类呢?它们之间有什么异同呢?

ReentrantLock VS synchronized

直接上表格:(手机横屏查看更方便)

功能 ReentrantLock synchronized
可重入 支持 支持
非公平 支持(默认) 支持
加锁/解锁方式 需要手动加锁、解锁,一般使用try..finally..保证锁能够释放 手动加锁,无需刻意解锁
按key锁 不支持,比如按用户id加锁 支持,synchronized加锁时需要传入一个对象
公平锁 支持,new ReentrantLock(true) 不支持
中断 支持,lockInterruptibly() 不支持
尝试加锁 支持,tryLock() 不支持
超时锁 支持,tryLock(timeout, unit) 不支持
获取当前线程获取锁的次数 支持,getHoldCount() 不支持
获取等待的线程 支持,getWaitingThreads() 不支持
检测是否被当前线程占有 支持,isHeldByCurrentThread() 不支持
检测是否被任意线程占有 支持,isLocked() 不支持
条件锁 可支持多个条件,condition.await(),condition.signal(),condition.signalAll() 只支持一个,obj.wait(),obj.notify(),obj.notifyAll()

对比测试

在测试之前,我们先预想一下结果,随着线程数的不断增加,ReentrantLock(fair)、ReentrantLock(unfair)、synchronized三者的效率怎样呢?

我猜测应该是ReentrantLock(unfair)> synchronized > ReentrantLock(fair)。

到底是不是这样呢?

直接上测试代码:(为了全面对比,彤哥这里把AtomicInteger和LongAdder也拿来一起对比了)

public class ReentrantLockVsSynchronizedTest {
public static AtomicInteger a = new AtomicInteger(0);
public static LongAdder b = new LongAdder();
public static int c = 0;
public static int d = 0;
public static int e = 0; public static final ReentrantLock fairLock = new ReentrantLock(true);
public static final ReentrantLock unfairLock = new ReentrantLock(); public static void main(String[] args) throws InterruptedException {
System.out.println("-------------------------------------");
testAll(1, 100000);
System.out.println("-------------------------------------");
testAll(2, 100000);
System.out.println("-------------------------------------");
testAll(4, 100000);
System.out.println("-------------------------------------");
testAll(6, 100000);
System.out.println("-------------------------------------");
testAll(8, 100000);
System.out.println("-------------------------------------");
testAll(10, 100000);
System.out.println("-------------------------------------");
testAll(50, 100000);
System.out.println("-------------------------------------");
testAll(100, 100000);
System.out.println("-------------------------------------");
testAll(200, 100000);
System.out.println("-------------------------------------");
testAll(500, 100000);
System.out.println("-------------------------------------");
// testAll(1000, 1000000);
System.out.println("-------------------------------------");
testAll(500, 10000);
System.out.println("-------------------------------------");
testAll(500, 1000);
System.out.println("-------------------------------------");
testAll(500, 100);
System.out.println("-------------------------------------");
testAll(500, 10);
System.out.println("-------------------------------------");
testAll(500, 1);
System.out.println("-------------------------------------");
} public static void testAll(int threadCount, int loopCount) throws InterruptedException {
testAtomicInteger(threadCount, loopCount);
testLongAdder(threadCount, loopCount);
testSynchronized(threadCount, loopCount);
testReentrantLockUnfair(threadCount, loopCount);
// testReentrantLockFair(threadCount, loopCount);
} public static void testAtomicInteger(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
a.incrementAndGet();
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testAtomicInteger: result=" + a.get() + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testLongAdder(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
b.increment();
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testLongAdder: result=" + b.sum() + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testReentrantLockFair(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
fairLock.lock();
// 消除try的性能影响
// try {
c++;
// } finally {
fairLock.unlock();
// }
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testReentrantLockFair: result=" + c + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testReentrantLockUnfair(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
unfairLock.lock();
// 消除try的性能影响
// try {
d++;
// } finally {
unfairLock.unlock();
// }
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testReentrantLockUnfair: result=" + d + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} public static void testSynchronized(int threadCount, int loopCount) throws InterruptedException {
long start = System.currentTimeMillis(); CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
for (int j = 0; j < loopCount; j++) {
synchronized (ReentrantLockVsSynchronizedTest.class) {
e++;
}
}
countDownLatch.countDown();
}).start();
} countDownLatch.await(); System.out.println("testSynchronized: result=" + e + ", threadCount=" + threadCount + ", loopCount=" + loopCount + ", elapse=" + (System.currentTimeMillis() - start));
} }

运行这段代码,你会发现结果大大出乎意料,真的是不测不知道,一测吓一跳,运行后发现以下规律:

随着线程数的不断增加,synchronized的效率竟然比ReentrantLock非公平模式要高!

彤哥的电脑上大概是高3倍左右,我的运行环境是4核8G,java版本是8,请大家一定要在自己电脑上运行一下,并且最好能给我反馈一下。

彤哥又使用Java7及以下的版本运行了,发现在Java7及以下版本中synchronized的效率确实比ReentrantLock的效率低一些。

总结

(1)synchronized是Java原生关键字锁;

(2)ReentrantLock是Java语言层面提供的锁;

(3)ReentrantLock的功能非常丰富,解决了很多synchronized的局限性;

(4)至于在非公平模式下,ReentrantLock与synchronized的效率孰高孰低,彤哥给出的结论是随着Java版本的不断升级,synchronized的效率只会越来越高;

彩蛋

既然ReentrantLock的功能更丰富,而且效率也不低,我们是不是可以放弃使用synchronized了呢?

答:我认为不是。因为synchronized是Java原生支持的,随着Java版本的不断升级,Java团队也是在不断优化synchronized,所以我认为在功能相同的前提下,最好还是使用原生的synchronized关键字来加锁,这样我们就能获得Java版本升级带来的免费的性能提升的空间。

另外,在Java8的ConcurrentHashMap中已经把ReentrantLock换成了synchronized来分段加锁了,这也是Java版本不断升级带来的免费的synchronized的性能提升。

推荐阅读

  1. 死磕 java同步系列之ReentrantLock源码解析(二)——条件锁

  2. 死磕 java同步系列之ReentrantLock源码解析(一)——公平锁、非公平锁

  3. 死磕 java同步系列之AQS起篇

  4. 死磕 java同步系列之自己动手写一个锁Lock

  5. 死磕 java魔法类之Unsafe解析

  6. 死磕 java同步系列之JMM(Java Memory Model)

  7. 死磕 java同步系列之volatile解析

  8. 死磕 java同步系列之synchronized解析


欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。

死磕 java同步系列之ReentrantLock VS synchronized——结果可能跟你想的不一样的更多相关文章

  1. 死磕 java同步系列之ReentrantLock源码解析(二)——条件锁

    问题 (1)条件锁是什么? (2)条件锁适用于什么场景? (3)条件锁的await()是在其它线程signal()的时候唤醒的吗? 简介 条件锁,是指在获取锁之后发现当前业务场景自己无法处理,而需要等 ...

  2. 死磕 java同步系列之ReentrantLock源码解析(一)——公平锁、非公平锁

    问题 (1)重入锁是什么? (2)ReentrantLock如何实现重入锁? (3)ReentrantLock为什么默认是非公平模式? (4)ReentrantLock除了可重入还有哪些特性? 简介 ...

  3. 死磕 java同步系列之CyclicBarrier源码解析——有图有真相

    问题 (1)CyclicBarrier是什么? (2)CyclicBarrier具有什么特性? (3)CyclicBarrier与CountDownLatch的对比? 简介 CyclicBarrier ...

  4. 死磕 java同步系列之Phaser源码解析

    问题 (1)Phaser是什么? (2)Phaser具有哪些特性? (3)Phaser相对于CyclicBarrier和CountDownLatch的优势? 简介 Phaser,翻译为阶段,它适用于这 ...

  5. 死磕 java同步系列之zookeeper分布式锁

    问题 (1)zookeeper如何实现分布式锁? (2)zookeeper分布式锁有哪些优点? (3)zookeeper分布式锁有哪些缺点? 简介 zooKeeper是一个分布式的,开放源码的分布式应 ...

  6. 死磕 java同步系列之redis分布式锁进化史

    问题 (1)redis如何实现分布式锁? (2)redis分布式锁有哪些优点? (3)redis分布式锁有哪些缺点? (4)redis实现分布式锁有没有现成的轮子可以使用? 简介 Redis(全称:R ...

  7. 死磕 java同步系列之终结篇

    简介 同步系列到此就结束了,本篇文章对同步系列做一个总结. 脑图 下面是关于同步系列的一份脑图,列举了主要的知识点和问题点,看过本系列文章的同学可以根据脑图自行回顾所学的内容,也可以作为面试前的准备. ...

  8. 死磕 java同步系列之StampedLock源码解析

    问题 (1)StampedLock是什么? (2)StampedLock具有什么特性? (3)StampedLock是否支持可重入? (4)StampedLock与ReentrantReadWrite ...

  9. 死磕 java同步系列之AQS终篇(面试)

    问题 (1)AQS的定位? (2)AQS的重要组成部分? (3)AQS运用的设计模式? (4)AQS的总体流程? 简介 AQS的全称是AbstractQueuedSynchronizer,它的定位是为 ...

随机推荐

  1. python-paramiko对远程服务器终端的操作

    1.with open写文件到本地 2.paramiko SFTPClient将文件推到salt服务端 3.paramiko SSHClient通过salt-cp将文件分发给目标服务器 1. with ...

  2. appium元素定位之AndroidUiAutomator

    UIAutomator 元素定位是 Android 系统原生支持的定位方式,虽然与 xpath 类似,但比它更好用,并且支持元素全部的属性定位,定位原理是通过 android 自带的android u ...

  3. python访问Apollo获取配置

    操作系统 : CentOS7.3.1611_x64 Python 版本 : 3.6.8 Apollo源码地址: https://github.com/ctripcorp/apollo 访问Apollo ...

  4. kafka速度快的原因

    我们都知道Kafka非常快,比绝大多数的市场上其他消息中间件都要快.这里来研究下那么为什么Kafka那么快(当然不会是因为它用了Scala). Kafka的消息是保存或缓存在磁盘上的,一般认为在磁盘上 ...

  5. 一年半前端工作经验试水杭州:我是如何拿下网易、阿里和滴滴 offer 的

    前言 笔者毕业于东北大学,大学毕业社招进入环球网,前端开发工程师一职.技术栈:React+node,Github 地址 成果 来到杭州的目标非常的明确,大厂.其实就是网易.阿里和滴滴.好在基本三家都拿 ...

  6. Python3爬取豆瓣网电影信息

      # -*- coding:utf-8 -*- """ 一个简单的Python爬虫, 用于抓取豆瓣电影Top前250的电影的名称 Language: Python3.6 ...

  7. CSS样式继承性

    CSS样式继承介绍 外层元素身上的样式会被内层元素所继承. 当内层元素身上的样式与外层的元素身上的样式相同时内层元素样式会覆盖外层元素样式. 并不是所有的样式都能够继承,只有文本与字体样式属性才能够被 ...

  8. 【转】java的string中,关于split空串总会返回单个元素的数组

    原地址:http://blog.sina.com.cn/s/blog_6f3da9650102x03c.html public class Split { public static void mai ...

  9. GitHub访问速度慢的一种优化方法

    GitHub是一个面向开源及私有软件项目的托管平台,因为只支持Git 作为唯一的版本库格式进行托管,故名GitHub. 由于GitHub是一个国外网站,在国内访问速度如何呢? 我们通过浏览器访问下ht ...

  10. Python3+Requests+Excel完整接口自动化框架

    框架整体使用Python3+Requests+Excel:包含对实时token的获取 框架结构图 1.------base -------runmethond.py runmethond:对不同的请求 ...