我们从最简单的问题开始:

给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.

要求:

  f(i) = max{ a(i-k+1),a(i-k+2),..., a(i) },i = 0,1,...,N-1

问题的另一种描述就是用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值。

解法一:

很直观的一种解法,那就是从数列的开头,将窗放上去,然后找到这最开始的k个数的最大值,然后窗最后移一个单元,继续找到k个数中的最大值。

这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(N*k)。

那么有没有更快一点的算法呢?

解法二:

我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面k-1个数其它在算f(i-1)的时候我们就比较过了。那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调递减队列。

单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于 i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首元素删除。

从上面的介绍当中,我们知道,单调队列与队列唯一的不同就在于它不仅要保存元素的值,而且要保存元素的索引(当然在实际应用中我们可以只需要保存索引,而通过索引间接找到当前索引的值)。

为了让读者更明白一点,我举个简单的例子。

假设数列为:8,7,12,5,16,9,17,2,4,6. N=10,k=3.

那么我们构造一个长度为3的单调递减队列:

首先,那8和它的索引0放入队列中,我们用(8,0)表示,每一步插入元素时队列中的元素如下:

0:插入8,队列为:(8,0)

1:插入7,队列为:(8,0),(7,1)

2:插入12,队列为:(12,2)

3:插入5,队列为:(12,2),(5,3)

4:插入16,队列为:(16,4)

5:插入9,队列为:(16,4),(9,5)

..........依此类推

那么f(i)就是第i步时队列当中的首元素:8,8,12,12,16,16.......

Code

#include <cstdio>
#include<deque>
#include <iostream>
#include <algorithm>
using namespace std; const int MAX_N=1e6+;
int a[MAX_N];
deque<int> p, q; int main()
{
int n, k;
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
} for(int i = ; i <= n; i++){
while(!p.empty() && (a[p.back()]>a[i]) ) p.pop_back();
p.push_back(i);
if(i - p.front() == k) p.pop_front();
if(i >= k) printf("%d ", a[p.front()]);
}
printf("\n");
for(int i = ; i <= n; i++) {
while(!q.empty() && (a[q.back()]<a[i]) ) q.pop_back();
q.push_back(i);
if(i - q.front() == k) q.pop_front();
if(i >= k) printf("%d ", a[q.front()]);
}
}
if(i - q.front() == k) q.pop_front();
while(!p.empty() && (p.front()+k<=i) ) p.pop_front();
//在这里的作用一样的,只不过上面的看起来更简洁

附:

deque-双向队列的基本用法

q.front()    //返回第一个元素的引用。
q.back() //返回最后一个元素的引用。
q.pop_back() //删除尾部的元素。不返回值。
q.pop_front() //删除头部元素。不返回值。
q.push_back(e) //在队尾添加一个元素e。
q.push_front(e) //在队头添加一个元素e。

[POJ2823] Sliding Window 「单调队列」的更多相关文章

  1. POJ2823 Sliding Window (单调队列)

    POJ2823 Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 38342   Accepte ...

  2. POJ2823 Sliding Window(单调队列)

    题目要输出一个序列各个长度k的连续子序列的最大值最小值. 多次RMQ的算法也是能过的,不过单调队列O(n). 这题,队列存元素值以及元素下标,队尾出队维护单调性然后入队,队首出队保持新元素下标与队首元 ...

  3. POJ 2823 Sliding Window(单调队列入门题)

      Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 67218   Accepted: 190 ...

  4. 题解报告:poj 2823 Sliding Window(单调队列)

    Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...

  5. poj 2823 Sliding Window(单调队列)

    /* 裸地单调队列.. 第一次写 写的好丑.... */ #include<iostream> #include<cstdio> #include<cstring> ...

  6. 【POJ 2823 Sliding Window】 单调队列

    题目大意:给n个数,一个长度为k(k<n)的闭区间从0滑动到n,求滑动中区间的最大值序列和最小值序列. 最大值和最小值是类似的,在此以最大值为例分析. 数据结构要求:能保存最多k个元素,快速取得 ...

  7. POJ 2823 Sliding Window 【单调队列】

    题目链接:http://poj.org/problem?id=2823 题目大意:给出一组数,一个固定大小的窗体在这个数组上滑动,要求出每次滑动该窗体内的最大值和最小值. 这就是典型的单调队列,单调队 ...

  8. 【POJ 2823】Sliding Window(单调队列/堆)

    BUPT2017 wintertraining(16) #5 D POJ - 2823 题意 给定n,k,求滑窗[i,i+k-1]在(1<=i<=n)的最大值最小值. 题解 单调队列或堆. ...

  9. POJ 2823 Sliding Window(单调队列 || 线段树)题解

    题意:求每个长度为k的数组的最大值和最小值 思路: 1.用线段树创建维护最大值和最小值,遍历询问,简单复习了一下...有点手生 2.单调队列: 可以看一下详解 单调队列顾名思义就是一个单调递增或者递减 ...

随机推荐

  1. Dynamics 365中的事件框架与事件执行管道(Event execution pipeline)

    本文介绍了Microsoft Dynamics 365(以下简称D365)中的两个概念,事件框架(Event Framework)与事件执行管道(Event execution pipeline). ...

  2. 使用wireshark捕获SSL/TLS包并分析

    原创博客,转载请注出处! TLS运作方式如下图:

  3. js与原生进行交互

    由于最近做的项目我作为web前端要和原生开发者合作,所以就去踩了踩坑. 这个功能是在h5页面上点击按钮关闭当前页面. function click_fn() { var u = navigator.u ...

  4. 28个Java开发常用规范技巧总结

    1.类的命名使用驼峰式命名的规范. 例如:UserService,但是以下情景例外:DO / BO / PO / DTO / VO. 例如说:UserPO,StudentPO(PO,VO,DTO,等这 ...

  5. Python开发【第五篇】: 内置模块

    内容概要 二分查找.冒泡 random time os sys pickle json shelve re 1.二分查找和冒泡排序 01. 二分查找 二分查找也称折半查找(Binary Search) ...

  6. Vue技术点整理 vue-devtools

    注:默认浏览器调试工具,在调试vue的页面时,是不能看到vue项目的属性状态值的,所以最好是在浏览器上安装 vue-devtools,这样就可以在浏览器里面审查和调试vue的应用了 1,Chrome浏 ...

  7. ubuntu18.04上搭建KVM虚拟机环境超完整过程

    看标题这是篇纯运维的文章.在中小型企业中,一般很少配置专业的运维人员,都是由开发人员兼着.同时,对有志于技术管理的开发人员来说,多了解一些运维及整个软件生命周期的知识,是很有帮助的,因为带团队不仅仅是 ...

  8. C++中 / 和 % 在分离各位时的妙用

    在学习c++的过程中,我们一般用 / 和 % 来分解数字的各个位 取整 (/) 比如1234 / 10 等于 123.4,这相当于把前三位分解出来了 取余(%) 比如 12345 的分解方法 个位:1 ...

  9. c++ 广度优先搜索(宽搜)

    c++ bfs基本应用 Knight Moves 题目描述 贝茜和她的表妹在玩一个简化版的国际象棋.棋盘如图所示: 贝茜和表妹各有一颗棋子.棋子每次移一步,且棋子只能往如图所示的八个方向移动.比赛的规 ...

  10. windows美化工具7+ Taskbar Tweaker

    今天分享一个windows美化工具 7+ Taskbar Tweaker 调整工具专为 Windows 任务栏工作者量身定制,支持 Windows 7 以及更高版本的(非服务器版)微软操作系统平台. ...