我们从最简单的问题开始:

给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.

要求:

  f(i) = max{ a(i-k+1),a(i-k+2),..., a(i) },i = 0,1,...,N-1

问题的另一种描述就是用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值。

解法一:

很直观的一种解法,那就是从数列的开头,将窗放上去,然后找到这最开始的k个数的最大值,然后窗最后移一个单元,继续找到k个数中的最大值。

这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(N*k)。

那么有没有更快一点的算法呢?

解法二:

我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面k-1个数其它在算f(i-1)的时候我们就比较过了。那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调递减队列。

单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于 i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首元素删除。

从上面的介绍当中,我们知道,单调队列与队列唯一的不同就在于它不仅要保存元素的值,而且要保存元素的索引(当然在实际应用中我们可以只需要保存索引,而通过索引间接找到当前索引的值)。

为了让读者更明白一点,我举个简单的例子。

假设数列为:8,7,12,5,16,9,17,2,4,6. N=10,k=3.

那么我们构造一个长度为3的单调递减队列:

首先,那8和它的索引0放入队列中,我们用(8,0)表示,每一步插入元素时队列中的元素如下:

0:插入8,队列为:(8,0)

1:插入7,队列为:(8,0),(7,1)

2:插入12,队列为:(12,2)

3:插入5,队列为:(12,2),(5,3)

4:插入16,队列为:(16,4)

5:插入9,队列为:(16,4),(9,5)

..........依此类推

那么f(i)就是第i步时队列当中的首元素:8,8,12,12,16,16.......

Code

#include <cstdio>
#include<deque>
#include <iostream>
#include <algorithm>
using namespace std; const int MAX_N=1e6+;
int a[MAX_N];
deque<int> p, q; int main()
{
int n, k;
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
} for(int i = ; i <= n; i++){
while(!p.empty() && (a[p.back()]>a[i]) ) p.pop_back();
p.push_back(i);
if(i - p.front() == k) p.pop_front();
if(i >= k) printf("%d ", a[p.front()]);
}
printf("\n");
for(int i = ; i <= n; i++) {
while(!q.empty() && (a[q.back()]<a[i]) ) q.pop_back();
q.push_back(i);
if(i - q.front() == k) q.pop_front();
if(i >= k) printf("%d ", a[q.front()]);
}
}
if(i - q.front() == k) q.pop_front();
while(!p.empty() && (p.front()+k<=i) ) p.pop_front();
//在这里的作用一样的,只不过上面的看起来更简洁

附:

deque-双向队列的基本用法

q.front()    //返回第一个元素的引用。
q.back() //返回最后一个元素的引用。
q.pop_back() //删除尾部的元素。不返回值。
q.pop_front() //删除头部元素。不返回值。
q.push_back(e) //在队尾添加一个元素e。
q.push_front(e) //在队头添加一个元素e。

[POJ2823] Sliding Window 「单调队列」的更多相关文章

  1. POJ2823 Sliding Window (单调队列)

    POJ2823 Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 38342   Accepte ...

  2. POJ2823 Sliding Window(单调队列)

    题目要输出一个序列各个长度k的连续子序列的最大值最小值. 多次RMQ的算法也是能过的,不过单调队列O(n). 这题,队列存元素值以及元素下标,队尾出队维护单调性然后入队,队首出队保持新元素下标与队首元 ...

  3. POJ 2823 Sliding Window(单调队列入门题)

      Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 67218   Accepted: 190 ...

  4. 题解报告:poj 2823 Sliding Window(单调队列)

    Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...

  5. poj 2823 Sliding Window(单调队列)

    /* 裸地单调队列.. 第一次写 写的好丑.... */ #include<iostream> #include<cstdio> #include<cstring> ...

  6. 【POJ 2823 Sliding Window】 单调队列

    题目大意:给n个数,一个长度为k(k<n)的闭区间从0滑动到n,求滑动中区间的最大值序列和最小值序列. 最大值和最小值是类似的,在此以最大值为例分析. 数据结构要求:能保存最多k个元素,快速取得 ...

  7. POJ 2823 Sliding Window 【单调队列】

    题目链接:http://poj.org/problem?id=2823 题目大意:给出一组数,一个固定大小的窗体在这个数组上滑动,要求出每次滑动该窗体内的最大值和最小值. 这就是典型的单调队列,单调队 ...

  8. 【POJ 2823】Sliding Window(单调队列/堆)

    BUPT2017 wintertraining(16) #5 D POJ - 2823 题意 给定n,k,求滑窗[i,i+k-1]在(1<=i<=n)的最大值最小值. 题解 单调队列或堆. ...

  9. POJ 2823 Sliding Window(单调队列 || 线段树)题解

    题意:求每个长度为k的数组的最大值和最小值 思路: 1.用线段树创建维护最大值和最小值,遍历询问,简单复习了一下...有点手生 2.单调队列: 可以看一下详解 单调队列顾名思义就是一个单调递增或者递减 ...

随机推荐

  1. impala学习笔记

    impala学习笔记 -- 建库 CREATE DATABASE IF NOT EXISTS database_name; -- 在HDFS文件系统中创建数据库,需要指定要创建数据库的位置. CREA ...

  2. Python之二叉树Binarytree

    二叉树是树的简化版,除根节点之外的所有节点都有一个父节点,任意节点都可以最多有一个左子节点和右子节点. 二叉树的遍历是非常重要的算法,主要分为深度优先遍历和广度优先遍历. 其中深度优先遍历按照访问根节 ...

  3. ABP开发框架前后端开发系列---(9)ABP框架的权限控制管理

    在前面两篇随笔<ABP开发框架前后端开发系列---(7)系统审计日志和登录日志的管理>和<ABP开发框架前后端开发系列---(8)ABP框架之Winform界面的开发过程>开始 ...

  4. Spring Boot:整合Swagger文档

    综合概述 spring-boot作为当前最为流行的Java web开发脚手架,越来越多的开发者选择用其来构建企业级的RESTFul API接口.这些接口不但会服务于传统的web端(b/s),也会服务于 ...

  5. Storm 学习之路(四)—— Storm集群环境搭建

    一.集群规划 这里搭建一个3节点的Storm集群:三台主机上均部署Supervisor和LogViewer服务.同时为了保证高可用,除了在hadoop001上部署主Nimbus服务外,还在hadoop ...

  6. 手把手docker部署java应用(初级篇)

    本篇原创发布于 Flex 的个人博客:点击跳转 前言   在没有 docker 前,项目转测试是比较麻烦的一件事.首先会化较长的时间搭建测试环境,然后在测试过程中又经常出现测试说是 bug,开发说无法 ...

  7. IIS下网站对options请求直接返回404

    什么是options请求 options请求为发送非简单跨域请求前的预检请求,若该请求未正常返回,浏览器会阻止后续的请求发送. 一般情况下,有三种方式会导致浏览器发起预检请求 1.请求的方法不是GET ...

  8. RT-thread线程创建:动态线程与静态线程

    本文介绍了如何创建一个动态线程和一个静态线程 RT-thread版本:RT-thread system 3.1.0 开发环境:MDK5 为了编程方便,创建了sample1.c文件,然后添加到工程中 话 ...

  9. redis宕机如何解决?如果是项目上线的宕机呢?

    我们先来了解一下  bridge网络模式 他会创建一个docker0桥,看完这个我们就会知道redis哨兵机制的端口了. 之后继续研究redis宕机的解决办法! 宕机: 服务器停止服务 如果只有一台r ...

  10. BZOJ 2957:楼房重建(分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2957 题意:…… 思路:对于每一个块,维护一个单调递增的斜率(因为小于前面的斜率的话是肯定看不见的) ...