3517: 翻硬币

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 281  Solved: 211
[Submit][Status][Discuss]

Description

有一个nn列的棋盘,每个格子上都有一个硬币,且n为偶数。每个硬币要么是正面朝上,要么是反面朝上。每次操作你可以选定一个格子(x,y),然后将第x行和第y列的所有硬币都翻面。求将所有硬币都变成同一个面最少需要的操作数。

Input

第一行包含一个正整数n
接下来n行,每行包含一个长度为n的01字符串,表示棋盘上硬币的状态。

Output

仅包含一行,为最少需要的操作数。

Sample Input

4
0101
1000
0010
0101

Sample Output

2

HINT

【样例说明】

对(2,3)和(3,1)进行操作,最后全变成1。

【数据规模】

对于100%的数据,n ≤ 1,000。

  上来一看,第一反应,异或数学题,想了半天如何异或也没想出来,问呵呵酵母菌,他说他觉得是图论WTF?!图论有几个O(n)算法能在这道题用上的。

  于是乎看了一眼题解:解异或方程组……

  一个点最多翻一遍,这话不用再说了吧……

  让我们先从都翻为0开始说起

  我们设x[i][j]为第i,j个点是否要翻,a[i][j]为该点初始状态,则x[1][j]^x[2][j]^……^x[n][j]^x[i][1]^x[i][2]^x[i][m]^x[i][j]=a[i][j]。

  我们把第i行和第j列所有的点按照上式列出方程组并合并, 由于n为偶数,则可以化为:

    x[i][j]=a[1][j]^a[2][j]^……^a[n][j]^a[i][1]^a[i][2]^……^a[i][m]^a[i][j]。

  那么我们只要对于每一行,每一列n^2预处理出他们的异或和再相加就好了。

  至于都为1吗?由于n是偶数,我们只要把每一个点是否翻的状态取反就是答案。

 #include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 1005
using namespace std;
int n,a[N][N];
char b[N];
int sum[][N];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",b+);
for(int j=;j<=n;j++)
{
a[i][j]=b[j]-'';
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
sum[][i]^=a[i][j];
sum[][j]^=a[i][j];
}
}
int ans=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int t=sum[][i]^sum[][j];
t^=a[i][j];
ans+=t;
}
}
ans=min(ans,n*n-ans);
printf("%d\n",ans);
return ;
}

Bzoj3517 翻硬币题解 解异或方程组的更多相关文章

  1. 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组

    [题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...

  2. bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...

  3. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  4. POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6 ...

  5. poj1222(高斯消元法解异或方程组+开关问题)

    题目链接:https://vjudge.net/problem/POJ-1222 题意:给定一个5×6的01矩阵,改变一个点的状态时它上下左右包括它自己的状态都会翻转,因为翻转2次等价与没有翻转,那么 ...

  6. bzoj3517 翻硬币

    题意 有一个n行n列的棋盘,每个格子上都有一个硬币,且n为偶数.每个硬币要么是正面朝上,要么是反面朝上.每次操作你可以选定一个格子(x,y),然后将第x行和第y列的所有硬币都翻面.求将所有硬币都变成同 ...

  7. fzu1704(高斯消元法解异或方程组+高精度输出)

    题目链接:https://vjudge.net/problem/FZU-1704 题意:经典开关问题,求使得灯全0的方案数. 思路:题目保证至少存在一种方案,即方程组一定有解,那么套上高斯消元法的板子 ...

  8. bzoj千题计划188:bzoj1923: [Sdoi2010]外星千足虫 (高斯—若尔当消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> ...

  9. 高斯—若尔当(约当)消元法解异或方程组+bitset优化模板

    高斯消元法是将矩阵化为上三角矩阵 高斯—若尔当消元法是 选定主元后,将主元化为1,枚举除主元之外的所有行进行消元 即将矩阵化为对角矩阵,这样不用回代 bitset<N>a[N]; int ...

随机推荐

  1. SQL Server修改标识列方法(备忘)

    原文:SQL Server修改标识列方法(备忘) SQL Server修改标识列方法 ----允许对系统表进行更新 exec sp_configure 'allow updates',1 reconf ...

  2. UWP入门(九)-- 枚举和查询文件和文件夹

    原文:UWP入门(九)-- 枚举和查询文件和文件夹 核心 API 所在的命名空间: Windows.Storage Windows.Storage.Streams Windows.Storage.Pi ...

  3. C#6.0一些特性

    1.自动属性初始化的改进 声明属性时可以直接进行初始化 public int id {get;set;}=10; 自动属性是省去了get和set内部的过程,而直接用set;get;这样的语句代替, 把 ...

  4. 微服务示例-Spring Cloud

    1~开发准备 JDK:1.8 Spring Boot:1.5.9.RELEASE Spring Coud:Edgware.RELEASE IDE:IntelliJ IDEA 2017 Maven:3. ...

  5. Sysinternals套件2016年11月更新发布,诸多工具被更新

    Sysinternals 实用程序可帮助您管理.解决和诊断 Windows 系统和应用程序,在 Sysinternals 的 2016 年 11 月更新中,微软增强 在 sysmon 对注册表和文件事 ...

  6. 演练:创建和使用动态链接库 (C++)

    我们将创建的第一种类型的库是动态链接库 (DLL). 使用 DLL 是一种重用代码的绝佳方式. 您不必在自己创建的每个程序中重新实现同一例程,而只需对这些例程编写一次,然后从需要该功能的应用程序引用它 ...

  7. mysql数据库同步系统otter部署实践(中国与欧洲同步)

    otter的介绍就不说了, 自己去看官网https://github.com/alibaba/otter/wiki 本系统中, 中国的服务器部署在阿里云上, 欧洲服务器部署在亚马逊上, 由于阿里云的网 ...

  8. JavaScript MVC框架PK:Angular、Backbone、CanJS与Ember(转载)

    原文地址:http://sporto.github.io/.../comparison-angular-backbone-can-ember/ 原文作者:Sebastian Porto @Twitte ...

  9. Google C++测试框架系列高级篇:第二章 让GTest学习打印自定义对象

    上一篇:更多关于断言的知识 原始链接:Teaching Google Test How to Print Your Values 词汇表 版本号:v_0.1 让GTest学习打印自定义对象 当一个断言 ...

  10. kafka设计原理(转)

    一.kafka简介 1.1 背景历史 当今社会各种应用系统,诸如商业.社交.搜索.浏览等信息工厂一样不断被生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何 ...