Bzoj3517 翻硬币题解 解异或方程组
3517: 翻硬币
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 281 Solved: 211
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
0101
1000
0010
0101
Sample Output
HINT
【样例说明】
对(2,3)和(3,1)进行操作,最后全变成1。
【数据规模】
对于100%的数据,n ≤ 1,000。
上来一看,第一反应,异或数学题,想了半天如何异或也没想出来,问呵呵酵母菌,他说他觉得是图论WTF?!图论有几个O(n)算法能在这道题用上的。
于是乎看了一眼题解:解异或方程组……
一个点最多翻一遍,这话不用再说了吧……
让我们先从都翻为0开始说起
我们设x[i][j]为第i,j个点是否要翻,a[i][j]为该点初始状态,则x[1][j]^x[2][j]^……^x[n][j]^x[i][1]^x[i][2]^x[i][m]^x[i][j]=a[i][j]。
我们把第i行和第j列所有的点按照上式列出方程组并合并, 由于n为偶数,则可以化为:
x[i][j]=a[1][j]^a[2][j]^……^a[n][j]^a[i][1]^a[i][2]^……^a[i][m]^a[i][j]。
那么我们只要对于每一行,每一列n^2预处理出他们的异或和再相加就好了。
至于都为1吗?由于n是偶数,我们只要把每一个点是否翻的状态取反就是答案。
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define N 1005
using namespace std;
int n,a[N][N];
char b[N];
int sum[][N];
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",b+);
for(int j=;j<=n;j++)
{
a[i][j]=b[j]-'';
}
}
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
sum[][i]^=a[i][j];
sum[][j]^=a[i][j];
}
}
int ans=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int t=sum[][i]^sum[][j];
t^=a[i][j];
ans+=t;
}
}
ans=min(ans,n*n-ans);
printf("%d\n",ans);
return ;
}
Bzoj3517 翻硬币题解 解异或方程组的更多相关文章
- 【BZOJ】2466: [中山市选2009]树 高斯消元解异或方程组
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据 ...
- bzoj千题计划187:bzoj1770: [Usaco2009 Nov]lights 燈 (高斯消元解异或方程组+枚举自由元)
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #in ...
- bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解异或方程组)
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10835 Accepted: 6 ...
- poj1222(高斯消元法解异或方程组+开关问题)
题目链接:https://vjudge.net/problem/POJ-1222 题意:给定一个5×6的01矩阵,改变一个点的状态时它上下左右包括它自己的状态都会翻转,因为翻转2次等价与没有翻转,那么 ...
- bzoj3517 翻硬币
题意 有一个n行n列的棋盘,每个格子上都有一个硬币,且n为偶数.每个硬币要么是正面朝上,要么是反面朝上.每次操作你可以选定一个格子(x,y),然后将第x行和第y列的所有硬币都翻面.求将所有硬币都变成同 ...
- fzu1704(高斯消元法解异或方程组+高精度输出)
题目链接:https://vjudge.net/problem/FZU-1704 题意:经典开关问题,求使得灯全0的方案数. 思路:题目保证至少存在一种方案,即方程组一定有解,那么套上高斯消元法的板子 ...
- bzoj千题计划188:bzoj1923: [Sdoi2010]外星千足虫 (高斯—若尔当消元法解异或方程组)
http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> ...
- 高斯—若尔当(约当)消元法解异或方程组+bitset优化模板
高斯消元法是将矩阵化为上三角矩阵 高斯—若尔当消元法是 选定主元后,将主元化为1,枚举除主元之外的所有行进行消元 即将矩阵化为对角矩阵,这样不用回代 bitset<N>a[N]; int ...
随机推荐
- c#获取电脑运行状态(cpu,内存,网络,系统运行时间)
public class DeviceMonitor { static readonly PerformanceCounter cpuCounter = new PerformanceCounter( ...
- 你遗忘的都在这里—iOS常用类型方法笔记
这些都是项目中常用但又常忘的方法,与大家分享一下. 一.NSString 创建字符串. NSString *astring = @"This is a String!"; 创建空 ...
- 笨重的mfc还在基于系统控件,熟练的mfc工程师还比不过学习Qt一个月的学生开发效率高(比较精彩,韦易笑)
作者:韦易笑链接:https://www.zhihu.com/question/29636221/answer/45102191来源:知乎著作权归作者所有,转载请联系作者获得授权. 更新:擦,本来只有 ...
- c# winform快捷键实现
我们在软件中经常用到快捷键,这里整理备份一下. 首先我们要定义可以作为快捷键的按键,以下是整理的 一些,自己可以根据情况来修改 public static Dictionary<int, str ...
- PHP调用语音合成接口
百度TTS 语音合成 //百度文件转换成语音 private function toSpeech($text) { define('DEMO_CURL_VERBOSE', false); $obj=[ ...
- 解决Mac下sed命令报错的问题
在Mac上准备批量替换一些文字,使用sed命令,如下: sed -i 's/xxx/yyy/g' file 同样的命令在Linux上是可以成功运行的,注意Mac下man sed中-i参数的说明: 原来 ...
- 系列教程 - java web开发
代码之间工作室持续推出Java Web开发系列教程与案例,供广大朋友分享交流技术经验,帮助喜欢java的朋友们学习进步: java web 开发教程(1) - 开发环境搭建 技术交流QQ群: 商务合作 ...
- Java逆序输出整数
题目要求:编写方法reverseDigit,将一个整数作为参数,并反向返回该数字.例如reverseDigit(123)的值是321.同时编写程序测试此方法. 说明:10的倍数的逆序,均以实际结果为准 ...
- 【JAVA NIO】java NIO
本文是博主深入学习Netty前的一些铺垫,之前只是使用Netty,用的很粗暴,导包,上网找个DEMO就直接用,对Netty中的组件了解并不深入. 于是再此总结下基础,并对一些核心组件作如下记录: 1. ...
- Codeforces Round #564 (Div. 2)A
A. Nauuo and Votes 题目链接:http://codeforces.com/contest/1173/problem/A 题目 Nauuo is a girl who loves wr ...