二分

首先,可以发现,最后的答案显然满足可二分性,因此我们可以二分答案。

然后,我们只要贪心,就可以验证了。

贪心

不难发现,肯定会优先选择能提供更多插座的排插,且在确定充电器个数的情况下,肯定选择能经过排插数量最大的那些充电器。

所以,我们只要模拟插排插的过程,记录当前深度\(d\)、插座数\(t\)即可。

设选择的能经过排插数量恰好为\(d\)的充电器有\(x\)个,则若\(t<x\),显然不合法。

否则,我们将\(x\)个位置插上充电器,其余位置尽可能地插排插,就可以了。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 400000
#define LL long long
#define Gmax(x,y) (x<(y)&&(x=(y)))
using namespace std;
int n,m,a[N+5],b[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
}F;
class GreedySolver
{
private:
I bool Check(CI x)
{
RI i,p=1,q=x,d=0;LL t=1,nt;W(q)
{
W(q&&d==b[q]) --t,--q;if(t<0) return false;//插充电器
for(i=t;i&&p<=n;--i) t+=a[p++]-1;++d;//插排插
}return true;
}
public:
I void Solve()
{
W(a[n]<=1) --n;RI l=1,r=m,mid;//删去无用的排插
W(l<r) Check(mid=l+r+1>>1)?l=mid:r=mid-1;printf("%d",l);//二分答案
}
}G;
I bool cmp(CI x,CI y) {return x>y;}
int main()
{
freopen("plugin.in","r",stdin),freopen("plugin.out","w",stdout);
RI i;for(F.read(n),F.read(m),i=1;i<=n;++i) F.read(a[i]);for(i=1;i<=m;++i) F.read(b[i]);//读入
return sort(a+1,a+n+1,cmp),sort(b+1,b+m+1,cmp),G.Solve(),0;//排序,贪心
}

【2019.8.15 慈溪模拟赛 T1】插头(plugin)(二分+贪心)的更多相关文章

  1. 【2019.8.15 慈溪模拟赛 T2】组合数(binom)(卢卡斯定理+高维前缀和)

    卢卡斯定理 题目中说到\(p\)是质数. 而此时要求组合数向质数取模的结果,就可以用卢卡斯定理: \[C_x^y=C_{x\ div\ p}^{y\ div\ p}\cdot C_{x\ mod\ p ...

  2. 【2019.7.15 NOIP模拟赛 T1】夹缝(mirror)(思维题)

    思维题 此题应该是比较偏思维的. 假设一次反射后前进的距离是\(2^x(2y+1)\),则显然,它可以看做是前进距离为\(2^x\)的光线经过了\((2y+1)\)次反射,两者是等价的,甚至后者可能还 ...

  3. 【2019.8.8 慈溪模拟赛 T1】开箱(chest)(暴力DP水过)

    转化题意 这题目乍一看十分玄学,完全不可做. 但实际上,假设我们在原序列从小到大排序之后,选择开的宝箱编号是\(p_{1\sim Z}\),则最终答案就是: \[\sum_{i=1}^Za_{p_i} ...

  4. 【2019.8.9 慈溪模拟赛 T1】数论(a)(打表找规律)

    莫比乌斯反演 血亏! 比赛时看到这题先写了个莫比乌斯反演,然后手造了几组数据和暴力对拍的时候发现,居然答案就是\(nm\)... 吐槽数据范围太小... 下面给上出题人对此题的解释: 原式的物理意义, ...

  5. 【2019.8.12 慈溪模拟赛 T1】钥匙(key)(暴力DP)

    暴力\(DP\) 这题做法很多,有\(O(n^2)\)的,有\(O(n^2logn)\)的,还有徐教练的\(O(nlogn)\)的,甚至还有\(bzt\)的二分+线段树优化建图的费用流. 我懒了点,反 ...

  6. 【2019.8.14 慈溪模拟赛 T1】我不是!我没有!别瞎说啊!(notme)(BFS+DP)

    \(IDA^*\) 说实话,这道题我一开始没想出正解,于是写了一个\(IDA^*\)... 但神奇的是,这个\(IDA^*\)居然连字符串长度分别为\(2500,4000\)的数据都跑得飞快,不过数据 ...

  7. 2019.03.15 ZJOI2019模拟赛 解题报告

    得分: \(20+45+15=80\)(三题暴力全写挂...) \(T1\):Lyk Love painting 首先,不难想到二分答案然后\(DP\)验证. 设当前需验证的答案为\(x\),则一个暴 ...

  8. 【2019.7.20 NOIP模拟赛 T1】A(A)(暴搜)

    打表+暴搜 这道题目,显然是需要打表的,不过打表的方式可以有很多. 我是打了两个表,分别表示每个数字所需的火柴棒根数以及从一个数字到另一个数字,除了需要去除或加入的火柴棒外,至少需要几根火柴棒. 然后 ...

  9. 【2019.7.25 NOIP模拟赛 T1】变换(change)(思维+大分类讨论)

    几个性质 我们通过推式子可以发现: \[B⇒AC⇒AAB⇒AAAC⇒C\] \[C⇒AB⇒AAC⇒AAAB⇒B\] 也就是说: 性质一: \(B,C\)可以相互转换. 则我们再次推式子可以发现: \[ ...

随机推荐

  1. C lang:Protect array data——Const

    Xx_Introduction Use pointer translate parameter array original data will change data,and use const p ...

  2. Python Exception处理

    Python中的错误处理分为两类:语法错误和异常处理.语法错误一般是指由于python语句.表达式.函数等存在书写格式活语法规则上的错误抛出的异常,如python常见的缩进控制,若同层次的执行语句存在 ...

  3. ORA-00904:"WM_CONCAT":标识符无效

    原创 Oracle 作者:Root__Liu 时间:2019-11-21 18:49:27  514  0 今天客户现场业务甩给我一个报错让处理,ora-00904:"WM_CONCAT&q ...

  4. Mysql安装、配置、优化

    MYSQL定义 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最 ...

  5. LeetCode刷题--两数相加(中等)

    题目描述 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新的链表来表 ...

  6. 《IM开发新手入门一篇就够:从零开发移动端IM》

        登录 立即注册 TCP/IP详解 资讯 动态 社区 技术精选 首页   即时通讯网›专项技术区›IM开发新手入门一篇就够:从零开发移动端IM   帖子 打赏 分享 发表评论162     想开 ...

  7. 3万字长文概述:通俗易懂告诉你什么是.NET?什么是.NET Framework?什么是.NET Core?

    [转载]通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core? 什么是.NET?什么是.NET Framework?本文将从上往下,循序渐进的介绍一系列相关.NET的 ...

  8. 手把手教你搭建织女星开发板RISC-V开发环境

    前言 Windows环境下搭建基于Eclipse + RISC-V gcc编译器的RISC-V开发环境,配合openocd调试软件,可以实现RISC-V内核程序的编译.下载和调试. 准备工作 工欲善其 ...

  9. javascript截取字符串的最后几个字符

    在JavaScript中截取字符串一般是使用内置的substring()方法和substr()方法,这两个方法功能都很强大,也都能实现截取字符串中的最后几个字符. substring()方法 Java ...

  10. ASP.NET Core 2.2 WebApi 系列【六】泛型仓储模式

    为什么要使用泛型仓储?好处是? 前两章在autofac注入的时候,用的User类作为例子,写了增删改查四个接口,也就是仓储的GRUD. 当我们再添加一个实体(比如Student)时,StudentRe ...