int Log[N];
struct ST {
int dp[N][], a[N];
void init(int n) {
for(int i = -(Log[]=-); i < N; i++)
Log[i] = Log[i - ] + ((i & (i - )) == );
for(int i = ; i <= n; ++i) dp[i][] = a[i];
for(int j = ; j <= Log[n]; j++)
for(int i = ; i+(<<j)- <= n; i++)
dp[i][j] = __gcd(dp[i][j-], dp[i+(<<(j-))][j-]);
}
int Query(int l, int r) {
int k = Log[r - l + ];
return __gcd(dp[l][k], dp[r-(<<k)+][k]);
}
}st;

模板汇总——ST(暂)的更多相关文章

  1. P3865 【模板】ST表

    P3865 [模板]ST表 https://www.luogu.org/problemnew/show/P3865 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数 ...

  2. 【模板】NOIP模板汇总

    图论 数据结构 数学 其他: 洛谷模板:a,b两个字符串,求b串在a串中出现的位置 #include<iostream> #include<cstdio> #include&l ...

  3. 洛谷 P3865 【模板】ST表

    P3865 [模板]ST表 题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1)O(1) 题目描述 给定一个长度为  ...

  4. 「LuoguP3865」 【模板】ST表 (线段树

    题目背景 这是一道ST表经典题——静态区间最大值 请注意最大数据时限只有0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O(1) 题目描述 给定一个长度为 N 的数列,和 M 次询问,求出每一 ...

  5. 【模板】ST表

    给定一个长度为 \(N\) 的数列,和 \(M\) 次询问,求出每一次询问的区间\([l,r]\)内数字的最大值. 说明 对于30%的数据,满足: \(1 \leq N, M \leq 10 , 1≤ ...

  6. SPOJ RPLN (模板题)(ST算法)【RMQ】

    <题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客  >& ...

  7. 【Luogu】P3865ST表模板(ST表)

    题目链接 本来准备自己yy一个倍增来着,然而一看要求O1查询就怂了. ST表模板.放上代码. #include<cstdio> #include<cstdlib> #inclu ...

  8. 模板 - 数据结构 - ST表/SparseTable

    SparseTable,俗称ST表,其功能,就是静态的RMQ(区间最值查询)问题的解决.注意传入查询的时候两个参数的合法性,或者可以进行一次全部初始化来使得越界值不产生负面影响.不过访问越界是写程序的 ...

  9. 模板:ST表

    ST表:解决RMQ类问题,预处理$O(nlog_{2}n)$,查询$O(1)$ 较线段树来说每次查询为1,线段树为log,但ST表不方便更改 ST表还用了倍增思想. 模板: struct ST_MAP ...

随机推荐

  1. Mybatis整合Spring 使用

    1.继承通用的Mapper<T>,必须指定泛型<T> 例如下面的例子: public interface UserInfoMapper extends Mapper<Us ...

  2. Shiro权限框架与SpringMVC集成

    1.Shiro整合SpringMVC 我们学习Shiro框架肯定是要应用到Web项目上的,所以我们需要整合Shiro和SpringMVC 整合步骤: 第一步:SpringMVC框架的配置 spring ...

  3. 【Python-Django】浏览器同源策略

    1995年,同源政策由 Netscape 公司引入浏览器.目前,所有浏览器都实行这个政策. 同源策略是浏览器的一个安全功能,不同源的客户端脚本(js文件)在没有明确授权的情况下,不能读写对方资源.只有 ...

  4. Docker入门学习笔记

    Docker 什么是Docker 虚拟化技术 在计算机中,虚拟化是一种资源管理技术,将计算机中的各种实体资源如:CPU.硬盘.内存等予以抽象.转换后呈现出来打破实体结构间的不可切割的障碍,使用户可以比 ...

  5. Linux基础文件打包

    一.打包与解压 (一).打包压缩 [root@linux ~]# tar -czf etc1.tar.gz /etc //-z 调用gzip [root@linux ~]# tar -cjf etc2 ...

  6. 商贸型企业 Java 收货 + 入库 + 生成付款单

    package cn.hybn.erp.modular.system.service.impl; import cn.hybn.erp.core.common.page.LayuiPageFactor ...

  7. abc -- 牛客

    题目描述 设a.b.c均是0到9之间的数字,abc.bcc是两个三位数,且有:abc+bcc=532.求满足条件的所有a.b.c的值. 输入描述: 题目没有任何输入. 输出描述: 请输出所有满足题目条 ...

  8. S3C2440 移植最新5.2linux内核

    基于 移植uboot后. 1. 移植linux内核 1.1 下载源码 打开 https://www.kernel.org/ 直接肝最新的 5.2.8 下载完后,在ubuntu里解压备用. 1.2 搭建 ...

  9. Winform改变Textbox边框颜色

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  10. c语言实现基本的数据结构(六) 串

    #include <stdio.h> #include <tchar.h> #include <stdlib.h> // TODO: 在此处引用程序需要的其他头文件 ...