Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 17321   Accepted: 5828

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

解同于方程组:

x≡r1(moda1)
x≡r2(moda2)
......
x≡rn(modan)
其中模数不一定互质。

题解

若模数两两互质,我们可以用中国剩余定理来解。 
这里我们先考虑两个方程:

    x≡r1(moda1)
    x≡r2(moda2)
我们可以写成:
     x+y1a1=r1
     x−y2a2=r2
相减得:y1a1+y2a2=r1−r2也就是ax+by=m的形式。 
这是可以用扩展欧几里德解的。 
若gcd(a,b)|m那么方程就无解,直接输出-1。 (如果m%gcd(a,b)!=0无解)
否则我们可以解出上式的y1。回带得到一个特解x0=r1−y1a1。 
通解可以写成x=x0+k∗lcm(a1,a2)也就是x≡x0(modlcm(a1,a2))。 
这样我们就将两个方程合并为了一个。
重复进行以上操作,我们最终能将n个方程全部合并,再用扩展欧几德得解出来就好了。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
ll a[],r[];
int n; ll exgcd(ll a,ll b,ll &x,ll &y){
if(b == ){
x = ;
y = ;
return a;
}
ll d = exgcd(b,a%b,x,y);
ll tmp = x;
x = y;
y = tmp - a/b*y;
return d;
} ll solve(){
ll M = a[],R = r[],x,y;
for(int i=;i<=n;i++){
ll d = exgcd(M,a[i],x,y);
if((R-r[i])%d!=){//无解
return -;
}
x = (R-r[i])/d*x%a[i];//这才是真正的x,记得模a[i]
R -= x*M;//特解x0,新的余数
M = M/d*a[i];//新的模数
R %= M;
}
return (R%M+M)%M;//确保R不为负数
} int main(){
while(cin >> n){
for(int i=;i<=n;i++){
cin >> a[i] >> r[i];
}
ll ans = solve();
cout << ans << endl;
}
return ;
}
												

数论 线性同余方程的应用 poj2891的更多相关文章

  1. 数论之同余性质 线性同余方程&拔山盖世BSGS&中国剩余定理

    先记录一下一些概念和定理 同余:给定整数a,b,c,若用c不停的去除a和b最终所得余数一样,则称a和b对模c同余,记做a≡b (mod c),同余满足自反性,对称性,传递性 定理1: 若a≡b (mo ...

  2. 数论 - n元线性同余方程的解法

    note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m       ...

  3. POJ2115:C Looooops(一元线性同余方程)

    题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...

  4. codeforces 710D Two Arithmetic Progressions(线性同余方程)

    题目链接: http://codeforces.com/problemset/problem/710/D 分析:给你两个方程 a1k + b1 and a2l + b2,求在一个闭区间[L,R]中有多 ...

  5. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  6. POJ2115 C Looooops(线性同余方程)

    无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...

  7. POJ1061 青蛙的约会(线性同余方程)

    线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...

  8. POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)

    分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...

  9. poj2115-C Looooops -线性同余方程

    线性同余方程的模板题.和青蛙的约会一样. #include <cstdio> #include <cstring> #define LL long long using nam ...

随机推荐

  1. python3 实现多域名批量访问特定目录(一)

    渗透测试之批量处理同一框架CMS系统漏洞 当我们做多网站的渗透测试时,会发现很多站点采用的都是同类型的CMS框架,只要我们发现一个漏洞,那么我们可以批量处理这一类站点,高效测试,如果不知道该站点的框架 ...

  2. spring注解不支持静态变量注入

    spring注解不支持静态变量注入:今天敲代码  自动配置 配置: Animal.java package study01_autoconfig.beanConfig; import org.spri ...

  3. java-极光推送教程

    一.准备工作: 1.访问极光推送官网:https://www.jiguang.cn/accounts/login/form 2.注册登陆,拿到appKey和masterSecret 3.创建一个应用, ...

  4. Scala基础语法学习(一)

    1. val和var的区别 val定义的是一个常量,无法改变其内容 scala> val s = 0 s: Int = 0 scala> s = 2 <console>:12: ...

  5. java并发编程(十八)----(线程池)java线程池框架Fork-Join

    还记得我们在初始介绍线程池的时候提到了Executor框架的体系,到现在为止我们只有一个没有介绍,与ThreadPoolExecutor一样继承与AbstractExecutorService的For ...

  6. tomcat和weblogic发布时,jar包内资源文件的读取路径问题

    问题场景: 本地使用的是tomcat作为发布容器,应用启动后一切正常: 发布测试环境服务器使用weblogic作为发布容器,发布后File类读取文件无法找到文件(路径错误). 问题原因: tomcat ...

  7. Java学习|String,StringBuffer,StringBuilder?

    1 String   (1) String的创建机理 由于String在Java世界中使用过于频繁,Java为了避免在一个系统中产生大量的String对象,引入了字符串常量池.其运行机制是:创建一个字 ...

  8. java-初读 HashTable

    有用的标识符 transiant 有用的属性 初始容量11 加载因子0.75 这里理解如果要经常插入大量数据可以增大加载因子 有用的方法 @Test public void testNan() { l ...

  9. nessus安装

    1.安装注册 (1)从https://www.tenable.com/products/nessus/select-your-operating-system上下载对应操作系统版本的nessus,结果 ...

  10. @Validated和@Valid区别

    注解地方 @Validated:可以用在类型.方法和方法参数上.但是不能用在成员属性(字段)上 @Valid:可以用在方法.构造函数.方法参数和成员属性(字段)上 两者是否能用于成员属性(字段)上直接 ...