LRU全称是Least Recently Used,即最近最久未使用的意思。
LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。
解决的实际问题:当做数据缓存时,缓存的数据会随着时间的推移越来越多,如果没有缓存清除策略,那么会出现俩个问题:1、缓存越来越大挤爆内存。2、很多不使用的数据占据这内存空间,导致内存得不到有效利用。
此场景使用LRU算法非常合适。
LRU算法的主要思想:

  1.设置一个缓存阈值,超过阈值删除最老的数据。

  2.保证最老的数据总是在链表的头部,最新的数据总是在尾部,这样每次需要删除数据时把头部数据删除即可。

linkedHashMap对LRU算法的实现:

import java.util.LinkedHashMap;
import java.util.Map; public class LRU<K,V> extends LinkedHashMap<K, V> implements Map<K, V>{ // private static final long serialVersionUID = 1L; public LRU(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor, accessOrder);
} /**
* @description 重写LinkedHashMap中的removeEldestEntry方法,当LRU中元素多余6个时,
* 删除最不经常使用的元素
* @author daoshao
* @param eldest
* @return
* @see java.util.LinkedHashMap#removeEldestEntry(java.util.Map.Entry)
*/
@Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
// TODO Auto-generated method stub
if(size() > 6){
return true;
}
return false;
} public static void main(String[] args) { LRU<Character, Integer> lru = new LRU<Character, Integer>(
16, 0.75f, true); String s = "abcdefghijkl";
for (int i = 0; i < s.length(); i++) {
lru.put(s.charAt(i), i);
}
System.out.println("LRU中key为h的Entry的值为: " + lru.get('h'));
System.out.println("LRU的大小 :" + lru.size());
System.out.println("LRU :" + lru);
}
}

 

基于LinkedhashMap实现的LRU算法的更多相关文章

  1. JDK自带的LinkedHashMap来实现LRU算法

    1 代码如下 public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> { private final i ...

  2. Redis的LRU算法

    Redis的LRU算法 LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似.在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策 ...

  3. LRU算法实现

    JDK中的实现 在JDK中LinkedHashMap可以作为LRU算法以及插入顺序的实现,LinkedHashMap继承自HashMap,底层结合hash表和双向链表,元素的插入和查询等操作通过计算h ...

  4. GuavaCache学习笔记一:自定义LRU算法的缓存实现

    前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU算法.于是乎便想到LinkedHashMap和LinkedList+HashMap, 这里仅仅是作为简单的复习一下. ...

  5. LRU算法---缓存淘汰算法

    计算机中的缓存大小是有限的,如果对所有数据都缓存,肯定是不现实的,所以需要有一种淘汰机制,用于将一些暂时没有用的数据给淘汰掉,以换入新鲜的数据进来,这样可以提高缓存的命中率,减少磁盘访问的次数. LR ...

  6. Guava---缓存之LRU算法

    随笔 - 169  文章 - 0  评论 - 292 GuavaCache学习笔记一:自定义LRU算法的缓存实现   前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU ...

  7. 缓存---LRU算法实现

    2.LRU   以下是基于双向链表+HashMap的LRU算法实现,对算法的解释如下:   设置一个map存放对应的键和值,同时设置一个双向链表,来保存最近最久未使用的关系,如果访问一个键,键存在于m ...

  8. 借助LinkedHashMap实现基于LRU算法缓存

    一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...

  9. LinkedHashMap 和 LRU算法实现

    个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V&g ...

随机推荐

  1. memcached.c 源码分析

    上文分析了memcached的autoconf过程以及configure, make过程,可以看到,memcached可执行文件是由memcached-memcached.o以及其他文件连接后编译出来 ...

  2. wpf界面按钮自动点击

    Button Button = new Button();Button.RaiseEvent(new RoutedEventArgs(Button.ClickEvent));//在按钮生成时便会自动触 ...

  3. Placement_pools on Rados-GW

    The purpose of this test is to map a RadosGw Bucket to a specific Ceph pool. For exemple, if using a ...

  4. java高并发系列 - 第24天:ThreadLocal、InheritableThreadLocal(通俗易懂)

    java高并发系列第24篇文章. 环境:jdk1.8. 本文内容 需要解决的问题 介绍ThreadLocal 介绍InheritableThreadLocal 需要解决的问题 我们还是以解决问题的方式 ...

  5. (二十五)c#Winform自定义控件-有确定取消的窗体(一)

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  6. Kafka之Producer

    通过https://www.cnblogs.com/tree1123/p/11243668.html 已经对consumer有了一定的了解.producer比consumer要简单一些. 一.旧版本p ...

  7. C#读取Txt大数据并更新到数据库

    环境 Sqlserver 2016 .net 4.5.2 目前测试数据1300万 大约3-4分钟.(限制一次读取条数 和 线程数是 要节省服务器资源,如果调太大服务器其它应用可能就跑不了了), Sql ...

  8. app登录接口请求报:“签名验证失败”???已解决

    根据抓包数据获得url.param.header,在charles中compose请求结果为成功,在pycharm中运行则报:“签名验证失败”. 运行结果:

  9. Python 标识符说明

    在Python中,标识符有字母.数字.下划线组成 所有标识符都可以包括英文.数字.下划线,但不能以数字开头 Python标识符区分大小写 ※以下划线开头的标识符有特殊含义. 例如:以单下划线开头(_t ...

  10. .NET Core 很酷,你不得不知!

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者.原文出处:https://www.infoq.cn/article/xPTBAR9-oJcVtUjTQ0tK ...