(手机横屏看源码更方便)


注:java源码分析部分如无特殊说明均基于 java8 版本。

注:本文基于ForkJoinPool分治线程池类。

简介

随着在硬件上多核处理器的发展和广泛使用,并发编程成为程序员必须掌握的一门技术,在面试中也经常考查面试者并发相关的知识。

今天,我们就来看一道面试题:

如何充分利用多核CPU,计算很大数组中所有整数的和?

剖析

  • 单线程相加?

我们最容易想到就是单线程相加,一个for循环搞定。

  • 线程池相加?

如果进一步优化,我们会自然而然地想到使用线程池来分段相加,最后再把每个段的结果相加。

  • 其它?

Yes,就是我们今天的主角——ForkJoinPool,但是它要怎么实现呢?似乎没怎么用过哈^^

三种实现

OK,剖析完了,我们直接来看三种实现,不墨迹,直接上菜。

/**
* 计算1亿个整数的和
*/
public class ForkJoinPoolTest01 {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// 构造数据
int length = 100000000;
long[] arr = new long[length];
for (int i = 0; i < length; i++) {
arr[i] = ThreadLocalRandom.current().nextInt(Integer.MAX_VALUE);
}
// 单线程
singleThreadSum(arr);
// ThreadPoolExecutor线程池
multiThreadSum(arr);
// ForkJoinPool线程池
forkJoinSum(arr); } private static void singleThreadSum(long[] arr) {
long start = System.currentTimeMillis(); long sum = 0;
for (int i = 0; i < arr.length; i++) {
// 模拟耗时,本文由公从号“彤哥读源码”原创
sum += (arr[i]/3*3/3*3/3*3/3*3/3*3);
} System.out.println("sum: " + sum);
System.out.println("single thread elapse: " + (System.currentTimeMillis() - start)); } private static void multiThreadSum(long[] arr) throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis(); int count = 8;
ExecutorService threadPool = Executors.newFixedThreadPool(count);
List<Future<Long>> list = new ArrayList<>();
for (int i = 0; i < count; i++) {
int num = i;
// 分段提交任务
Future<Long> future = threadPool.submit(() -> {
long sum = 0;
for (int j = arr.length / count * num; j < (arr.length / count * (num + 1)); j++) {
try {
// 模拟耗时
sum += (arr[j]/3*3/3*3/3*3/3*3/3*3);
} catch (Exception e) {
e.printStackTrace();
}
}
return sum;
});
list.add(future);
} // 每个段结果相加
long sum = 0;
for (Future<Long> future : list) {
sum += future.get();
} System.out.println("sum: " + sum);
System.out.println("multi thread elapse: " + (System.currentTimeMillis() - start));
} private static void forkJoinSum(long[] arr) throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis(); ForkJoinPool forkJoinPool = ForkJoinPool.commonPool();
// 提交任务
ForkJoinTask<Long> forkJoinTask = forkJoinPool.submit(new SumTask(arr, 0, arr.length));
// 获取结果
Long sum = forkJoinTask.get(); forkJoinPool.shutdown(); System.out.println("sum: " + sum);
System.out.println("fork join elapse: " + (System.currentTimeMillis() - start));
} private static class SumTask extends RecursiveTask<Long> {
private long[] arr;
private int from;
private int to; public SumTask(long[] arr, int from, int to) {
this.arr = arr;
this.from = from;
this.to = to;
} @Override
protected Long compute() {
// 小于1000的时候直接相加,可灵活调整
if (to - from <= 1000) {
long sum = 0;
for (int i = from; i < to; i++) {
// 模拟耗时
sum += (arr[i]/3*3/3*3/3*3/3*3/3*3);
}
return sum;
} // 分成两段任务,本文由公从号“彤哥读源码”原创
int middle = (from + to) / 2;
SumTask left = new SumTask(arr, from, middle);
SumTask right = new SumTask(arr, middle, to); // 提交左边的任务
left.fork();
// 右边的任务直接利用当前线程计算,节约开销
Long rightResult = right.compute();
// 等待左边计算完毕
Long leftResult = left.join();
// 返回结果
return leftResult + rightResult;
}
}
}

彤哥偷偷地告诉你,实际上计算1亿个整数相加,单线程是最快的,我的电脑大概是100ms左右,使用线程池反而会变慢。

所以,为了演示ForkJoinPool的牛逼之处,我把每个数都/3*3/3*3/3*3/3*3/3*3了一顿操作,用来模拟计算耗时。

来看结果:

sum: 107352457433800662
single thread elapse: 789
sum: 107352457433800662
multi thread elapse: 228
sum: 107352457433800662
fork join elapse: 189

可以看到,ForkJoinPool相对普通线程池还是有很大提升的。

问题:普通线程池能否实现ForkJoinPool这种计算方式呢,即大任务拆中任务,中任务拆小任务,最后再汇总?

你可以试试看(-᷅_-᷄)

OK,下面我们正式进入ForkJoinPool的解析。

分治法

  • 基本思想

把一个规模大的问题划分为规模较小的子问题,然后分而治之,最后合并子问题的解得到原问题的解。

  • 步骤

(1)分割原问题:

(2)求解子问题:

(3)合并子问题的解为原问题的解。

在分治法中,子问题一般是相互独立的,因此,经常通过递归调用算法来求解子问题。

  • 典型应用场景

(1)二分搜索

(2)大整数乘法

(3)Strassen矩阵乘法

(4)棋盘覆盖

(5)归并排序

(6)快速排序

(7)线性时间选择

(8)汉诺塔

ForkJoinPool继承体系

ForkJoinPool是 java 7 中新增的线程池类,它的继承体系如下:

ForkJoinPool和ThreadPoolExecutor都是继承自AbstractExecutorService抽象类,所以它和ThreadPoolExecutor的使用几乎没有多少区别,除了任务变成了ForkJoinTask以外。

这里又运用到了一种很重要的设计原则——开闭原则——对修改关闭,对扩展开放。

可见整个线程池体系一开始的接口设计就很好,新增一个线程池类,不会对原有的代码造成干扰,还能利用原有的特性。

ForkJoinTask

两个主要方法

  • fork()

fork()方法类似于线程的Thread.start()方法,但是它不是真的启动一个线程,而是将任务放入到工作队列中。

  • join()

join()方法类似于线程的Thread.join()方法,但是它不是简单地阻塞线程,而是利用工作线程运行其它任务。当一个工作线程中调用了join()方法,它将处理其它任务,直到注意到目标子任务已经完成了。

三个子类

  • RecursiveAction

无返回值任务。

  • RecursiveTask

有返回值任务。

  • CountedCompleter

无返回值任务,完成任务后可以触发回调。

ForkJoinPool内部原理

ForkJoinPool内部使用的是“工作窃取”算法实现的。

(1)每个工作线程都有自己的工作队列WorkQueue;

(2)这是一个双端队列,它是线程私有的;

(3)ForkJoinTask中fork的子任务,将放入运行该任务的工作线程的队头,工作线程将以LIFO的顺序来处理工作队列中的任务;

(4)为了最大化地利用CPU,空闲的线程将从其它线程的队列中“窃取”任务来执行;

(5)从工作队列的尾部窃取任务,以减少竞争;

(6)双端队列的操作:push()/pop()仅在其所有者工作线程中调用,poll()是由其它线程窃取任务时调用的;

(7)当只剩下最后一个任务时,还是会存在竞争,是通过CAS来实现的;

ForkJoinPool最佳实践

(1)最适合的是计算密集型任务,本文由公从号“彤哥读源码”原创;

(2)在需要阻塞工作线程时,可以使用ManagedBlocker;

(3)不应该在RecursiveTask的内部使用ForkJoinPool.invoke()/invokeAll();

总结

(1)ForkJoinPool特别适合于“分而治之”算法的实现;

(2)ForkJoinPool和ThreadPoolExecutor是互补的,不是谁替代谁的关系,二者适用的场景不同;

(3)ForkJoinTask有两个核心方法——fork()和join(),有三个重要子类——RecursiveAction、RecursiveTask和CountedCompleter;

(4)ForkjoinPool内部基于“工作窃取”算法实现;

(5)每个线程有自己的工作队列,它是一个双端队列,自己从队列头存取任务,其它线程从尾部窃取任务;

(6)ForkJoinPool最适合于计算密集型任务,但也可以使用ManagedBlocker以便用于阻塞型任务;

(7)RecursiveTask内部可以少调用一次fork(),利用当前线程处理,这是一种技巧;

彩蛋

ManagedBlocker怎么使用?

答:ManagedBlocker相当于明确告诉ForkJoinPool框架要阻塞了,ForkJoinPool就会启另一个线程来运行任务,以最大化地利用CPU。

请看下面的例子,自己琢磨哈^^。

/**
* 斐波那契数列
* 一个数是它前面两个数之和
* 1,1,2,3,5,8,13,21
*/
public class Fibonacci { public static void main(String[] args) {
long time = System.currentTimeMillis();
Fibonacci fib = new Fibonacci();
int result = fib.f(1_000).bitCount();
time = System.currentTimeMillis() - time;
System.out.println("result,本文由公从号“彤哥读源码”原创 = " + result);
System.out.println("test1_000() time = " + time);
} public BigInteger f(int n) {
Map<Integer, BigInteger> cache = new ConcurrentHashMap<>();
cache.put(0, BigInteger.ZERO);
cache.put(1, BigInteger.ONE);
return f(n, cache);
} private final BigInteger RESERVED = BigInteger.valueOf(-1000); public BigInteger f(int n, Map<Integer, BigInteger> cache) {
BigInteger result = cache.putIfAbsent(n, RESERVED);
if (result == null) { int half = (n + 1) / 2; RecursiveTask<BigInteger> f0_task = new RecursiveTask<BigInteger>() {
@Override
protected BigInteger compute() {
return f(half - 1, cache);
}
};
f0_task.fork(); BigInteger f1 = f(half, cache);
BigInteger f0 = f0_task.join(); long time = n > 10_000 ? System.currentTimeMillis() : 0;
try { if (n % 2 == 1) {
result = f0.multiply(f0).add(f1.multiply(f1));
} else {
result = f0.shiftLeft(1).add(f1).multiply(f1);
}
synchronized (RESERVED) {
cache.put(n, result);
RESERVED.notifyAll();
}
} finally {
time = n > 10_000 ? System.currentTimeMillis() - time : 0;
if (time > 50)
System.out.printf("f(%d) took %d%n", n, time);
}
} else if (result == RESERVED) {
try {
ReservedFibonacciBlocker blocker = new ReservedFibonacciBlocker(n, cache);
ForkJoinPool.managedBlock(blocker);
result = blocker.result;
} catch (InterruptedException e) {
throw new CancellationException("interrupted");
} }
return result;
// return f(n - 1).add(f(n - 2));
} private class ReservedFibonacciBlocker implements ForkJoinPool.ManagedBlocker {
private BigInteger result;
private final int n;
private final Map<Integer, BigInteger> cache; public ReservedFibonacciBlocker(int n, Map<Integer, BigInteger> cache) {
this.n = n;
this.cache = cache;
} @Override
public boolean block() throws InterruptedException {
synchronized (RESERVED) {
while (!isReleasable()) {
RESERVED.wait();
}
}
return true;
} @Override
public boolean isReleasable() {
return (result = cache.get(n)) != RESERVED;
}
}
}

欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。

死磕 java线程系列之ForkJoinPool深入解析的更多相关文章

  1. 死磕 java线程系列之线程池深入解析——普通任务执行流程

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:线程池源码部分如无特殊说明均指ThreadPoolExecutor类. 简介 前面我们一起学习了Java中 ...

  2. 死磕 java线程系列之线程池深入解析——未来任务执行流程

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:线程池源码部分如无特殊说明均指ThreadPoolExecutor类. 简介 前面我们一起学习了线程池中普 ...

  3. 死磕 java线程系列之线程模型

    问题 (1)线程类型有哪些? (2)线程模型有哪些? (3)各语言使用的是哪种线程模型? 简介 在Java中,我们平时所说的并发编程.多线程.共享资源等概念都是与线程相关的,这里所说的线程实际上应该叫 ...

  4. 死磕 java线程系列之线程池深入解析——体系结构

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 简介 Java的线程池是块硬骨头,对线程池的源码做深入研究不仅能提高对Java整个并发编程的理解,也能提高自己 ...

  5. 死磕 java线程系列之线程池深入解析——定时任务执行流程

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:本文基于ScheduledThreadPoolExecutor定时线程池类. 简介 前面我们一起学习了普通 ...

  6. 死磕 java线程系列之终篇

    (手机横屏看源码更方便) 简介 线程系列我们基本就学完了,这一个系列我们基本都是围绕着线程池在讲,其实关于线程还有很多东西可以讲,后面有机会我们再补充进来.当然,如果你有什么好的想法,也可以公从号右下 ...

  7. 死磕 java线程系列之创建线程的8种方式

    (手机横屏看源码更方便) 问题 (1)创建线程有哪几种方式? (2)它们分别有什么运用场景? 简介 创建线程,是多线程编程中最基本的操作,彤哥总结了一下,大概有8种创建线程的方式,你知道吗? 继承Th ...

  8. 死磕 java线程系列之自己动手写一个线程池

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. (手机横屏看源码更方便) 问题 (1)自己动手写一个线程池需要考虑哪些因素? (2)自己动手写 ...

  9. 死磕 java线程系列之线程池深入解析——生命周期

    (手机横屏看源码更方便) 注:java源码分析部分如无特殊说明均基于 java8 版本. 注:线程池源码部分如无特殊说明均指ThreadPoolExecutor类. 简介 上一章我们一起重温了下线程的 ...

随机推荐

  1. 初级Python

    [toc] 一.数据类型 1.1基本数据类型 1.1.1数字类型 1.整数类型 十进制:1010,-219 二进制:以0b或0B开头:0b010,-0B101 八进制,以0o或0O开头:0o123,- ...

  2. [LeetCode] 824. Goat Latin

    Description A sentence S is given, composed of words separated by spaces. Each word consists of lowe ...

  3. ELK 学习笔记之 elasticsearch 版本控制

    版本控制: elasticsearch 版本控制: 内部版本控制 外部版本控制 内部版本控制: 内部版本会检查你提供的版本值和文档的版本值是否一致,如果不一致就报错,一致则可以更新. curl -XP ...

  4. 使用jsr303实现数据校验

    除了前端的js验证,服务端也可加入数据验证,springmvc中有两种方式可以验证输入 利用spring自带的验证框架 利用jsr303实现 jsr303实现数据校验 jsr303是java为bean ...

  5. jsonp与cors跨域解析

    1.浏览器的同源安全策略 没错,就是这家伙干的,浏览器只允许请求当前域的资源,而对其他域的资源表示不信任.那怎么才算跨域呢? 请求协议http,https的不同 域domain的不同 端口port的不 ...

  6. Java Intellij 第一个HelloWord

    前言 最近重心点都在Java, 鉴于避免一些跟我一样学习Java开始啥都不懂,不知如何下手,方便小白快速入门.故写下此文,鉴于分享. (前提是安装jdk, 建议使用版本是1.8) JDK 安装地址:h ...

  7. Proving Equivalences UVA - 12167

    题文:https://vjudge.net/problem/UVA-12167 题解: 很明显,先要缩点.然后画一下图就会发现是入度为0的点和出度为0的点取max. 代码: #include < ...

  8. 单元测试实践(SpringCloud+Junit5+Mockito+DataMocker)

    网上看过一句话,单元测试就像早睡早起,每个人都说好,但是很少有人做到.从这么多年的项目经历亲身证明,是真的. 这次借着项目内实施单元测试的机会,记录实施的过程和一些总结经验. 项目情况 首先是背景,项 ...

  9. 解决vue组件内前置路由守卫beforeRouteEnter无法获取上下文this

    问题描述 vue框架,只有在报名页面报名成功,然后自动跳转到订单详情,才弹出一个引流弹窗,其他情况均不弹出,我就想到使用vue 的组件内前置守卫beforeRouteEnter来实现.beforeRo ...

  10. 第3章(2) Linux下C编程风格

    Linux内核编码风格在内核源代码的Documentation/CodingStyle目录下(新版本内核在Documentation/process/coding-style.rst). 变量命名采用 ...