数竞大佬jhc的三角函数复习题
班主任让数竞大佬jhc整理的三角函数复习题,我参与编辑完成。个别题目来自参考书。度盘pdf格式下载:复习题提取码419d,答案提取码5a12
“单纯”的运算
本文由蒋浩川原创,由\(MiserWeyte\)使用\(\LaTeX\)编辑,采用CC BY-SA 4.0协议发布。
一、公式
1、三角比
\(\sin\alpha=\dfrac{y}{r}\)
\(\cos\alpha=\dfrac{x}{r}\)
\(\tan\alpha=\dfrac{y}{x}\)
2、三角函数线
单位圆中:
\(\sin\alpha=|HY|\)
\(\cos\alpha=|OY|\)
\(\tan\alpha=|\ JL|\)
3.诱导公式xN
\(\sin(-\alpha)=-\sin\alpha\ \ \ \ \ \ \ \ \ \ \cos(-\alpha)=\cos\alpha\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tan(-\alpha)=-\tan\alpha\)
\(\sin(\pi-\alpha)=\sin\alpha\ \ \ \ \ \ \ \ \ \cos(\pi-\alpha)=-\cos\alpha\ \ \ \ \ \ \ \ \ \tan(\pi-\alpha)=-\tan\alpha\)
\(\sin(\pi+\alpha)=-\sin\alpha\ \ \ \ \ \ \cos(\pi+\alpha)=-\cos\alpha\ \ \ \ \ \ \ \ \tan(\pi+\alpha)=\tan\alpha\)
\(\sin(\frac{\pi}{2}+\alpha)=\cos\alpha\ \ \ \ \ \ \ \ \cos(\frac{\pi}{2}+\alpha)=-\sin\alpha\ \ \ \ \ \ \ \ \tan(\frac{\pi}{2}+\alpha)=-\frac{1}{\tan\alpha}\)
\(\sin(\frac{\pi}{2}-\alpha)=\cos\alpha\ \ \ \ \ \ \ \ \cos(\frac{\pi}{2}-\alpha)=\sin\alpha\ \ \ \ \ \ \ \ \ \ \ \tan(\frac{\pi}{2}-\alpha)=\frac{1}{\tan\alpha}\)
4.和差倍半
\(\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)
\(\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
\(\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\)
\(\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta\)
\(\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)
\(\tan(\alpha-\beta)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}\)
\(\sin2\alpha=2\sin\alpha\cos\alpha\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sin^2\frac{\alpha}{2}=\frac{1-\cos\alpha}{2}\)
\(\cos2\alpha=\cos^2\alpha-\sin^2\alpha\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cos^2\frac{\alpha}{2}=\frac{1+\cos\alpha}{2}\)
\(\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \tan^2\frac{\alpha}{2}=\frac{1-\cos\alpha}{1+\cos\alpha}\)
5.辅助角公式
\(a\sin\alpha+b\cos\alpha=\sqrt{a^2+b^2}\sin(\alpha+\varphi)\)
\(\varphi=\arctan\frac{b}{a}\)
6.其他
\(1=\sin^2\alpha+\cos^2\alpha\)
\(2\cos^2\alpha=1+\cos2\alpha\)
\(2\sin^2\alpha=1-\cos2\alpha\)
二、练习
1.已知\(\angle\alpha\)终边上一点\(P(-3m,\ 4m)\),\(m\not=0\),求\(\alpha\)的三个三角比
2.设\(\alpha\in(2k\pi,\ 2k\pi+\frac{\pi}{2})(\pi\in Z)\),证明\(\sin\alpha<\alpha<\tan\alpha\)以及\(\sin\alpha+\cos\alpha>1\)
- 设:
\[f(x)=\begin{cases}
\sin\pi x, \ x<0\\
f(x-1)+1, \ x\ge0
\end{cases}\ \ \ \ \ \ \
g(x)=\begin{cases}
\cos\pi x, \ x<\frac{1}{2}\\
g(x-1)+1, \ x\ge\frac{1}{2}
\end{cases}
\]
求\(f(\frac{1}{3})+f(\frac{3}{4})+g(\frac{1}{4})+g(\frac{5}{6})\)
4.求\(\dfrac{\cos(2\pi-\alpha)\cdot\tan(-\alpha-\pi)\cdot\tan(3\pi-\alpha)}{\sin(\pi-\alpha)\cdot\tan(\pi-\alpha)}\ \ \ \ \ \ \ \ (\alpha\not=k\pi+\frac{\pi}{2})\)
5.设\(k\in Z\),求证\(\cos(k\pi+\alpha)=(-1)^k\cos\alpha\),\(\sin(k\pi+\alpha)=(-1)^k\sin\alpha\)。
6.求\(\alpha\):\((1)\sin\alpha=\frac{1}{2} \ \ \ \ \ \ \ (2)\tan\alpha=\frac{\sqrt{3}}{3}\)
7.已知\(\tan\alpha=2\)。求:
\((1)\dfrac{\sin\alpha+3\cos\alpha}{3\sin\alpha-4\cos\alpha}\ \ \ \ (2)\dfrac{\sin^2\alpha+8\sin\alpha\cos\alpha-6\cos^2\alpha}{3\sin^2\alpha-4\cos^2\alpha}\)
\((3)sin^2\alpha-3\sin\alpha\cos\alpha+4\cos^2\alpha-2\)
8.求\(\cos(\alpha+\frac{5}{12}\pi)\cos(\alpha+\frac{\pi}{6})+\cos(\frac{\pi}{12}-\alpha)\cos(\frac{\pi}{3}-\alpha)\)
9.已知\(\sin(\alpha+\frac{\pi}{6})=\frac{3}{5}\),\(\alpha\in(\frac{\pi}{3}, \frac{5}{6}\pi)\),求\(\tan(\alpha+\frac{5}{12})\)
10.若方程\(2\sin x+\sqrt5\cos x=\frac{1}{k}\)有解,求\(k\)范围。
11.求\(\sin10^\circ\cdot\sin50^\circ\cdot\sin70^\circ\)
12.\(\sin\alpha+\sin\beta=\)\(\frac{\sqrt2}{2}\),求\(\cos\alpha+\cos\beta\)范围。
三、拓展公式
\(\sin\alpha=\dfrac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}\ \ \ \ \ \ \ \ \ \ \cos\alpha=\dfrac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}\ \ \ \ \ \ \ \ \ \ \tan\alpha=\dfrac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}}\)
和差化积与积化和差略。
\((\sin\alpha\pm\cos\alpha)^2=1\pm\sin2\alpha\)
\((1+\tan\alpha)(1+\tan\beta)=2\Longleftrightarrow\alpha+\beta=k\pi+\frac{\pi}{4},k\in Z\)
\(\sin(\alpha+\beta)\cdot\sin(\alpha-\beta)=\sin^2\alpha-\sin^2\beta=\cos^2\beta-\cos^2\alpha\)
\(\cos(\alpha+\beta)\cdot\cos(\alpha-\beta)=\cos^2\alpha-\sin^2\beta\)
四、综合与提升
1.已知\(\alpha\in(0, \frac{\pi}{4})\),\(\beta\in(0, 1)\),试比较:
\(x=(\sin\alpha)^{\log_\beta\sin\alpha}\),\(y=(\cos\alpha)^{\log_\beta\cos\alpha}\),\(z=(\sin\alpha)^{\log_\beta\cos\alpha}\)
2.设锐角\(\theta\)使关于\(x\)的方程\(x^2+4x\cos\theta+\frac{1}{\tan\theta}=0\)有重根,求\(\theta\)。
3.求证\(\dfrac{\cos\alpha}{1+\sin\alpha}-\dfrac{\sin\alpha}{1+\cos\alpha}=\dfrac{2(\cos\alpha-\sin\alpha)}{1+\cos\alpha+\sin\alpha}\)
4.已知\(\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})\)且\(\alpha\not=0\),\(\beta\in(0, \pi)\)且\(\beta\not=\frac{\pi}{2}\),\(\sin\alpha=\sqrt2\cos\beta\),\(\tan\alpha\tan\beta=\sqrt3\),求\(\alpha\),\(\beta\)
5.已知\(\dfrac{\sin^4\alpha}{\cos^2\beta}+\dfrac{\cos^4\alpha}{\sin^2\beta}=1\)且\(\alpha,\beta\in(0,\dfrac{\pi}{2})\),求证\(\alpha+\beta=\dfrac{\pi}{2}\)
6.求\(\cos\frac{2}{5}\pi+\cos\frac{4}{5}\pi\)
“单纯”的运算 参考答案
练习答案
- (1)当\(m>0\)时,\(\sin\alpha=\frac{4}{5}\),\(\cos\alpha=-\frac{3}{5}\),\(\sin\alpha=-\frac{4}{3}\)
(2)当\(m<0\)时,\(\sin\alpha=-\frac{4}{5}\),\(\cos\alpha=\frac{3}{5}\),\(\sin\alpha=-\frac{4}{3}\) - 如“三角函数线“图,\(\sin\alpha=|HY|,\alpha=\overset{\frown} {HL},\tan\alpha=|JL|\)
\(\therefore\sin\alpha<\alpha<\tan\alpha\)
\(\therefore\sin\alpha+\cos\alpha=|OY|+|HY|>|OH|=1\) - \(f(\frac{1}{3})=f(-\frac{2}{3})+1=-\frac{\sqrt3}{2}+1,\ \ f(\frac{3}{4})=f(-\frac{1}{4})+1=-\frac{\sqrt2}{2}+1\)
\(g(\frac{1}{4})=\frac{\sqrt2}{2},\ \ g(\frac{5}{6})=\frac{\sqrt3}{2}+1\)
\(\therefore\)所求\(=3\) - 原式\(=\dfrac{\cos\alpha\cdot(-\tan\alpha)\cdot(-\tan\alpha)}{\sin\alpha\cdot\tan\alpha}=1\)
- 蒋浩川说这题显而易见,略QwQ
- (1)\(\alpha=2k\pi+\frac{\pi}{6}\)或\(2k\pi+\frac{5}{6}\pi\ (k\in Z)\) (2)\(\alpha=k\pi+\frac{\pi}{6}\ (k\in Z)\)
- (1)原式\(=\frac{\tan\alpha+3}{3\tan\alpha-4}=\frac{5}{2}\)(2)原式\(=\frac{\tan^2\alpha+8\tan\alpha-6}{3\tan^2\alpha-4}=\frac{7}{4}\)
(3)原式\(=\frac{\tan^2\alpha-3\tan\alpha+2}{\tan^2\alpha+1}-2=-\frac{8}{5}\) - 原式\(=\cos(\alpha+\frac{\pi}{6})\sin(\frac{\pi}{12}-\alpha)+\cos(\frac{\pi}{12}-\alpha)\sin(\alpha+\frac{\pi}{6})=\sin\frac{\pi}{4}=\frac{\sqrt2}{2}\)
- \(\tan(\alpha+\frac{5}{12}\pi)=\dfrac{1+\tan(\alpha+\frac{\pi}{6})}{1-\tan(\alpha+\frac{\pi}{6})}\ \ \ \ \ \ \because\sin(\alpha+\frac{\pi}{6})=\frac{3}{5},\alpha+\frac{\pi}{6}\in(\frac{\pi}{2},\pi)\)
\(\therefore\tan(\alpha+\frac{\pi}{6})=-\frac{3}{4}\ \ \ \ \ \ \ \ \therefore\)所求\(=\frac{1}{7}\) - 左式\(=3\sin(\alpha+\theta),\theta=\arctan\frac{\sqrt5}{2}\ \ \ \ \ \ \ \\)\(\therefore\)左式\(\in[-3,3]\)
\(\therefore-3\leq\frac{1}{k}\leq3\ \ \ \ \ \ \ \ \ \ \ \ \therefore k\in[-\infty,-\frac{1}{3}]\cup[\frac{1}{3},\infty]\) - 所求\(=\cos80^\circ\cos40^\circ\cos20^\circ=\dfrac{\frac{1}{8}\sin160^\circ}{\sin20^\circ}=\dfrac{1}{8}\)
- \((\sin\alpha+\sin\beta)^2+(\cos\alpha+\cos\beta)^2=2+2\cos(x-y)\in[0,4]\)
\(\Rightarrow\cos\alpha+\cos\beta=\pm\sqrt{2+\cos(\alpha-y)-\frac{1}{2}}\in[-\frac{\sqrt{14}}{2},\frac{\sqrt{14}}{2}]\)
综合与提升答案
- \(\because f(x)=log_bx\)为减函数\(,b\in(0,1)\ \ \ \ \ \ \ \ 0\sin\alpha<\cos\alpha<1,\alpha\in(0,\frac{\pi}{4})\)
\(\Rightarrow\log_b\sin\alpha>\log_b\cos\alpha>0\)
\(\Rightarrow x<z,z<y \ \ \ \ \ \ \ \ \ \ \therefore x<z<y\) - 依题意\(\Delta=16\cos^2\theta-4\cot\theta=0\)且\(\cot\theta\not=0\)
\(\therefore\Delta=4\cot\theta(2\sin2\theta-1)=0\)
\(\Rightarrow\sin2\theta=\frac{1}{2}\Rightarrow\theta=\frac{\pi}{12}\)或\(\frac{5}{12}\pi\) - \(\dfrac{\cos\alpha}{1+\sin\alpha}=\dfrac{1-\sin\alpha}{\cos\alpha}=\dfrac{\cos\alpha+1-\sin\alpha}{1+\sin\alpha+\cos\alpha}\)
\(\dfrac{\sin\alpha}{1+\cos\alpha}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha+1-\cos\alpha}{1+\cos\alpha+\sin\alpha}\)
\(\Rightarrow\)所求证成立
- 两式平方并作商,\(\Rightarrow\cos^2\alpha=\frac{2}{3}\sin^2\beta\)
又\(\because\sin^2\alpha=2\cos^2\beta\)
两式相加\(\Rightarrow2\cos^2\beta+\frac{2}{3}\sin^2\beta=1\Rightarrow\sin^2\beta=\frac{3}{4}\)
\(\because\beta\in(0, \pi),\beta\not=\frac{\pi}{2}\ \ \ \ \ \ \ \ \therefore\sin\beta=\frac{\sqrt3}{2},\beta=\frac{\pi}{3}\)或\(\frac{2}{3}\pi\)
\[\therefore\begin{cases}
\alpha=\frac{\pi}{4}\\
\beta=\frac{\pi}{3}
\end{cases}\ \ \ 或
\begin{cases}
\alpha=-\frac{\pi}{4}\\
\beta=\frac{2}{3}\pi
\end{cases}
\] - 令\(\dfrac{\sin^2\alpha}{\cos\beta}=\sin\theta\ \ \ \ \ \ \dfrac{\cos^2\alpha}{\sin\beta}=\cos\theta\ \ \ \ \ \ \theta\in(0, \dfrac{\pi}{2})\)
\(\therefore\sin\theta\cos\beta+\sin\beta\cos\theta=\sin^2\alpha+\cos^2\alpha=1\)
\(\Rightarrow\sin(\theta+\beta)=1\Rightarrow\sin\theta=\cos\beta\ \ \ \ \therefore\dfrac{\sin^2\alpha}{\cos\beta}=\sin\theta=\cos\beta\)
\(\therefore\sin\alpha=\cos\beta\ \ \ \ \ \ \ \ \ \ \ \ Q.E.D.\) - 令\(x=\cos\frac{2}{5}\pi+\cos\frac{4}{5}\pi,y=\cos\frac{2}{5}\pi-\cos\frac{4}{5}\pi\)
\(x\cdot y=\cos^2\frac{2}{5}\pi-\cos^2\frac{4}{5}\pi=\frac{1}{2}(1+\cos\frac{4}{5}\pi)-\frac{1}{2}(1+\cos\frac{5}{8}\pi)\)
\(=\frac{1}{2}(\cos\frac{4}{5}\pi-\cos\frac{8}{5}\pi)=-\frac{1}{2}y\)
\(\Rightarrow x=-\frac{1}{2}\)
数竞大佬jhc的三角函数复习题的更多相关文章
- BZOJ3930:[CQOI2015]选数——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://www.luogu.org/problemnew/show/P3172#sub ...
- NOIP2018 20天训练
Day 0 2018.10.20 其实写的时候已经是Day 1了--(凌晨两点) 终于停课了,爽啊 get树状数组+线段树(延迟标记) 洛谷:提高组所有nlogn模板+每日一道搜索题(基本的图的遍历题 ...
- JXOI2019 退役记
day0 考前一天在机房和RyeCatcher,还有高一数竞大佬wyt一起颓三国杀,被深深吸引无法自拔,所谓大考大浪,也算是缓解缓解压力 刷刷空间发现好多外地OIer都赶到江科了,萌生出去见一见我江西 ...
- it's over | 2019 CSP-S 第二轮认证(超长预警)
也许应该从Day -1(2019年11月14日周四)开始说起? 卑微的我们在学长的怂恿下终于...停课了(哇我们太菜了,只停一天半的课有个卵用 早读后我带头去办公室请假,飞哥很大方地答应了,同时免了我 ...
- it's over | 2019 CSP-S 第一轮认证
不知道自己有没有凉,毕竟我们省这么弱(据说有的省80都悬... 其实这几天对初赛基本没什么感觉,可能是没给自己多大压力吧,倒是班上的一群同学似乎比我们还着急,我们的数学课代表兼数竞大佬特意给我画了吉祥 ...
- 题解luoguP2054 BZOJ1965【[AHOI2005]洗牌】
题目链接: https://www.luogu.org/problemnew/show/P2054 https://www.lydsy.com/JudgeOnline/problem.php?id=1 ...
- CSP-S2019 停课日记
前言 不想上文化课,于是就停课了 (雾) \(10.13\) 停课前一天 今天名义上是放假,所以不算停课. 老师和同学们听说我要停课,都十分的不舍.我啥也没说就悄悄溜到一中来了. \(10.14\) ...
- [ZJOI2019]游记之我的第一次省选--自闭记
2019/3/23 day -1 今天是体育中考....(祝我好运) 实心球再次投出测量范围,虽然成绩是10.5,但是目测有15米. 立定跳远2.70,好近,我爸叫我跳2.8的QwQ. 1000米最后 ...
- 友链&&日记
上面友链,下面日记 友人链 最喜欢galgameの加藤聚聚 初三一本&&\(ACG\)姿势比我还丰厚的yx巨巨 更喜欢galgame的shadowice czx ZigZag胖胖 文文 ...
随机推荐
- yii2 验证规则使用方法
required : 必须值验证属性 [['字段名'],required,'requiredValue'=>'必填值','message'=>'提示信息']; #说明:CRequiredV ...
- Dockerfile 构建镜像
一.使用dockerfile构建镜像 基本结构: a.设置基础镜像 当前镜像继承于的基础镜像 FROM centos:latest b.设置维护者信息 没有固定格式 c.设置需要添加到容器中的文件 ...
- win10下使用Linux命令
下载Cygwin安装包 官网下载地址:https://cygwin.com/install.html 执行下载好的安装程序 选择默认安装路径C:\cygwin64即可,可在C:\cygwin64\bi ...
- Openshift yum安装
Openshift yum安装: Yum 安装docker [root@DockerServer openshift]# yum repolist [root@DockerServer openshi ...
- IDEA 学习笔记之 Web项目开发
Web项目开发: 添加新模块: 起名: 添加jars: 添加Tomcat/local: 添加项目: 启动Tomcat: 看到web页面: 修改页面: 重新部署页面:
- python语言程序设计基础(嵩天)第三章课后习题部分个人练习
p69: *题3.5: 源代码: (1)print(30-3**2+8//3**2*10) 答案:21 (2)print(3*4**2/8%5) 答案:1.0 (3)print(2** ...
- win7环境搭建以太坊私链
如何创建私链: 创建创世配置文件: 首先需要创建一个“创世”json配置文件,此文件描述了创世区块的一些参数.下面就是文件中的内容: { "coinbase": "0x0 ...
- 关于jQery中$.Callbacks()的理解
$.Callbacks()主要使用了回调,而说到回调又不得不说javascript的事件循环机制了. 所以想了解回调最好先看看js运行机制. $.Callbacks()可以理解为创建一个回调队列 va ...
- Linux内存描述之内存节点node–Linux内存管理(二)
日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDrivers Linux内存管理 #1 ...
- asp.net core 腾讯验证码的接入
asp.net core 腾讯验证码的接入 Intro 之前使用的验证码服务是用的极验验证,而且是比较旧的,好久之前接入的,而且验证码服务依赖 Session,有点不太灵活,后来发现腾讯也有验证码服务 ...