Spark 系列(十四)—— Spark Streaming 基本操作
一、案例引入
这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计。项目依赖和代码实现如下:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>2.4.3</version>
</dependency>
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
object NetworkWordCount {
def main(args: Array[String]) {
/*指定时间间隔为 5s*/
val sparkConf = new SparkConf().setAppName("NetworkWordCount").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
/*创建文本输入流,并进行词频统计*/
val lines = ssc.socketTextStream("hadoop001", 9999)
lines.flatMap(_.split(" ")).map(x => (x, 1)).reduceByKey(_ + _).print()
/*启动服务*/
ssc.start()
/*等待服务结束*/
ssc.awaitTermination()
}
}
使用本地模式启动 Spark 程序,然后使用 nc -lk 9999
打开端口并输入测试数据:
[root@hadoop001 ~]# nc -lk 9999
hello world hello spark hive hive hadoop
storm storm flink azkaban
此时控制台输出如下,可以看到已经接收到数据并按行进行了词频统计。
下面针对示例代码进行讲解:
3.1 StreamingContext
Spark Streaming 编程的入口类是 StreamingContext,在创建时候需要指明 sparkConf
和 batchDuration
(批次时间),Spark 流处理本质是将流数据拆分为一个个批次,然后进行微批处理,batchDuration
就是批次拆分的时间间隔。这个时间可以根据业务需求和服务器性能进行指定,如果业务要求低延迟并且服务器性能也允许,则这个时间可以指定得很短。
这里需要注意的是:示例代码使用的是本地模式,配置为 local[2]
,这里不能配置为 local[1]
。这是因为对于流数据的处理,Spark 必须有一个独立的 Executor 来接收数据,然后再由其他的 Executors 来处理,所以为了保证数据能够被处理,至少要有 2 个 Executors。这里我们的程序只有一个数据流,在并行读取多个数据流的时候,也需要保证有足够的 Executors 来接收和处理数据。
3.2 数据源
在示例代码中使用的是 socketTextStream
来创建基于 Socket 的数据流,实际上 Spark 还支持多种数据源,分为以下两类:
- 基本数据源:包括文件系统、Socket 连接等;
- 高级数据源:包括 Kafka,Flume,Kinesis 等。
在基本数据源中,Spark 支持监听 HDFS 上指定目录,当有新文件加入时,会获取其文件内容作为输入流。创建方式如下:
// 对于文本文件,指明监听目录即可
streamingContext.textFileStream(dataDirectory)
// 对于其他文件,需要指明目录,以及键的类型、值的类型、和输入格式
streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)
被监听的目录可以是具体目录,如 hdfs://host:8040/logs/
;也可以使用通配符,如 hdfs://host:8040/logs/2017/*
。
关于高级数据源的整合单独整理至:Spark Streaming 整合 Flume 和 Spark Streaming 整合 Kafka
3.3 服务的启动与停止
在示例代码中,使用 streamingContext.start()
代表启动服务,此时还要使用 streamingContext.awaitTermination()
使服务处于等待和可用的状态,直到发生异常或者手动使用 streamingContext.stop()
进行终止。
二、Transformation
2.1 DStream与RDDs
DStream 是 Spark Streaming 提供的基本抽象。它表示连续的数据流。在内部,DStream 由一系列连续的 RDD 表示。所以从本质上而言,应用于 DStream 的任何操作都会转换为底层 RDD 上的操作。例如,在示例代码中 flatMap 算子的操作实际上是作用在每个 RDDs 上 (如下图)。因为这个原因,所以 DStream 能够支持 RDD 大部分的transformation算子。
2.2 updateStateByKey
除了能够支持 RDD 的算子外,DStream 还有部分独有的transformation算子,这当中比较常用的是 updateStateByKey
。文章开头的词频统计程序,只能统计每一次输入文本中单词出现的数量,想要统计所有历史输入中单词出现的数量,可以使用 updateStateByKey
算子。代码如下:
object NetworkWordCountV2 {
def main(args: Array[String]) {
/*
* 本地测试时最好指定 hadoop 用户名,否则会默认使用本地电脑的用户名,
* 此时在 HDFS 上创建目录时可能会抛出权限不足的异常
*/
System.setProperty("HADOOP_USER_NAME", "root")
val sparkConf = new SparkConf().setAppName("NetworkWordCountV2").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
/*必须要设置检查点*/
ssc.checkpoint("hdfs://hadoop001:8020/spark-streaming")
val lines = ssc.socketTextStream("hadoop001", 9999)
lines.flatMap(_.split(" ")).map(x => (x, 1))
.updateStateByKey[Int](updateFunction _) //updateStateByKey 算子
.print()
ssc.start()
ssc.awaitTermination()
}
/**
* 累计求和
*
* @param currentValues 当前的数据
* @param preValues 之前的数据
* @return 相加后的数据
*/
def updateFunction(currentValues: Seq[Int], preValues: Option[Int]): Option[Int] = {
val current = currentValues.sum
val pre = preValues.getOrElse(0)
Some(current + pre)
}
}
使用 updateStateByKey
算子,你必须使用 ssc.checkpoint()
设置检查点,这样当使用 updateStateByKey
算子时,它会去检查点中取出上一次保存的信息,并使用自定义的 updateFunction
函数将上一次的数据和本次数据进行相加,然后返回。
2.3 启动测试
在监听端口输入如下测试数据:
[root@hadoop001 ~]# nc -lk 9999
hello world hello spark hive hive hadoop
storm storm flink azkaban
hello world hello spark hive hive hadoop
storm storm flink azkaban
此时控制台输出如下,所有输入都被进行了词频累计:
同时在输出日志中还可以看到检查点操作的相关信息:
# 保存检查点信息
19/05/27 16:21:05 INFO CheckpointWriter: Saving checkpoint for time 1558945265000 ms
to file 'hdfs://hadoop001:8020/spark-streaming/checkpoint-1558945265000'
# 删除已经无用的检查点信息
19/05/27 16:21:30 INFO CheckpointWriter:
Deleting hdfs://hadoop001:8020/spark-streaming/checkpoint-1558945265000
三、输出操作
3.1 输出API
Spark Streaming 支持以下输出操作:
Output Operation | Meaning |
---|---|
print() | 在运行流应用程序的 driver 节点上打印 DStream 中每个批次的前十个元素。用于开发调试。 |
saveAsTextFiles(prefix, [suffix]) | 将 DStream 的内容保存为文本文件。每个批处理间隔的文件名基于前缀和后缀生成:“prefix-TIME_IN_MS [.suffix]”。 |
saveAsObjectFiles(prefix, [suffix]) | 将 DStream 的内容序列化为 Java 对象,并保存到 SequenceFiles。每个批处理间隔的文件名基于前缀和后缀生成:“prefix-TIME_IN_MS [.suffix]”。 |
saveAsHadoopFiles(prefix, [suffix]) | 将 DStream 的内容保存为 Hadoop 文件。每个批处理间隔的文件名基于前缀和后缀生成:“prefix-TIME_IN_MS [.suffix]”。 |
foreachRDD(func) | 最通用的输出方式,它将函数 func 应用于从流生成的每个 RDD。此函数应将每个 RDD 中的数据推送到外部系统,例如将 RDD 保存到文件,或通过网络将其写入数据库。 |
前面的四个 API 都是直接调用即可,下面主要讲解通用的输出方式 foreachRDD(func)
,通过该 API 你可以将数据保存到任何你需要的数据源。
3.1 foreachRDD
这里我们使用 Redis 作为客户端,对文章开头示例程序进行改变,把每一次词频统计的结果写入到 Redis,并利用 Redis 的 HINCRBY
命令来进行词频统计。这里需要导入 Jedis 依赖:
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.9.0</version>
</dependency>
具体实现代码如下:
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.{Seconds, StreamingContext}
import redis.clients.jedis.Jedis
object NetworkWordCountToRedis {
def main(args: Array[String]) {
val sparkConf = new SparkConf().setAppName("NetworkWordCountToRedis").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
/*创建文本输入流,并进行词频统计*/
val lines = ssc.socketTextStream("hadoop001", 9999)
val pairs: DStream[(String, Int)] = lines.flatMap(_.split(" ")).map(x => (x, 1)).reduceByKey(_ + _)
/*保存数据到 Redis*/
pairs.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
var jedis: Jedis = null
try {
jedis = JedisPoolUtil.getConnection
partitionOfRecords.foreach(record => jedis.hincrBy("wordCount", record._1, record._2))
} catch {
case ex: Exception =>
ex.printStackTrace()
} finally {
if (jedis != null) jedis.close()
}
}
}
ssc.start()
ssc.awaitTermination()
}
}
其中 JedisPoolUtil
的代码如下:
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
public class JedisPoolUtil {
/* 声明为 volatile 防止指令重排序 */
private static volatile JedisPool jedisPool = null;
private static final String HOST = "localhost";
private static final int PORT = 6379;
/* 双重检查锁实现懒汉式单例 */
public static Jedis getConnection() {
if (jedisPool == null) {
synchronized (JedisPoolUtil.class) {
if (jedisPool == null) {
JedisPoolConfig config = new JedisPoolConfig();
config.setMaxTotal(30);
config.setMaxIdle(10);
jedisPool = new JedisPool(config, HOST, PORT);
}
}
}
return jedisPool.getResource();
}
}
3.3 代码说明
这里将上面保存到 Redis 的代码单独抽取出来,并去除异常判断的部分。精简后的代码如下:
pairs.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val jedis = JedisPoolUtil.getConnection
partitionOfRecords.foreach(record => jedis.hincrBy("wordCount", record._1, record._2))
jedis.close()
}
}
这里可以看到一共使用了三次循环,分别是循环 RDD,循环分区,循环每条记录,上面我们的代码是在循环分区的时候获取连接,也就是为每一个分区获取一个连接。但是这里大家可能会有疑问:为什么不在循环 RDD 的时候,为每一个 RDD 获取一个连接,这样所需要的连接数会更少。实际上这是不可行的,如果按照这种情况进行改写,如下:
pairs.foreachRDD { rdd =>
val jedis = JedisPoolUtil.getConnection
rdd.foreachPartition { partitionOfRecords =>
partitionOfRecords.foreach(record => jedis.hincrBy("wordCount", record._1, record._2))
}
jedis.close()
}
此时在执行时候就会抛出 Caused by: java.io.NotSerializableException: redis.clients.jedis.Jedis
,这是因为在实际计算时,Spark 会将对 RDD 操作分解为多个 Task,Task 运行在具体的 Worker Node 上。在执行之前,Spark 会对任务进行闭包,之后闭包被序列化并发送给每个 Executor,而 Jedis
显然是不能被序列化的,所以会抛出异常。
第二个需要注意的是 ConnectionPool 最好是一个静态,惰性初始化连接池 。这是因为 Spark 的转换操作本身就是惰性的,且没有数据流时不会触发写出操作,所以出于性能考虑,连接池应该是惰性的,因此上面 JedisPool
在初始化时采用了懒汉式单例进行惰性初始化。
3.4 启动测试
在监听端口输入如下测试数据:
[root@hadoop001 ~]# nc -lk 9999
hello world hello spark hive hive hadoop
storm storm flink azkaban
hello world hello spark hive hive hadoop
storm storm flink azkaban
使用 Redis Manager 查看写入结果 (如下图),可以看到与使用 updateStateByKey
算子得到的计算结果相同。
本片文章所有源码见本仓库:spark-streaming-basis
参考资料
Spark 官方文档:http://spark.apache.org/docs/latest/streaming-programming-guide.html
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南
Spark 系列(十四)—— Spark Streaming 基本操作的更多相关文章
- struts2官方 中文教程 系列十四:主题Theme
介绍 当您使用一个Struts 2标签时,例如 <s:select ..../> 在您的web页面中,Struts 2框架会生成HTML,它会显示外观并控制select控件的布局.样式和 ...
- Spark(十) -- Spark Streaming API编程
本文测试的Spark版本是1.3.1 Spark Streaming编程模型: 第一步: 需要一个StreamingContext对象,该对象是Spark Streaming操作的入口 ,而构建一个S ...
- spark系列-7、spark调优
官网说明:http://spark.apache.org/docs/2.1.1/tuning.html#data-serialization 一.JVM调优 1.1.Java虚拟机垃圾回收调优的背景 ...
- spark系列-2、Spark 核心数据结构:弹性分布式数据集 RDD
一.RDD(弹性分布式数据集) RDD 是 Spark 最核心的数据结构,RDD(Resilient Distributed Dataset)全称为弹性分布式数据集,是 Spark 对数据的核心抽象, ...
- 学习ASP.NET Core Razor 编程系列十四——文件上传功能(二)
学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...
- 闯祸了,生成环境执行了DDL操作《死磕MySQL系列 十四》
由于业务随着时间不停的改变,起初的表结构设计已经满足不了如今的需求,这时你是不是想那就加字段呗!加字段也是个艺术活,接下来由本文的主人咔咔给你吹. 试想一下这个场景 事务A在执行一个非常大的查询 事务 ...
- MP实战系列(十四)之分页使用
MyBatis Plus的分页,有插件式的,也有其自带了,插件需要配置,说麻烦也不是特别麻烦,不过觉得现有的MyBatis Plus足以解决,就懒得配置插件了. MyBatis Plus的资料不算是太 ...
- 【spark系列3】spark开发简单指南
分布式数据集创建之textFile 文本文件的RDDs能够通过SparkContext的textFile方法创建,该方法接受文件的URI地址(或者机器上的文件本地路径,或者一个hdfs ...
- Spark(十四)SparkStreaming的官方文档
一.SparkCore.SparkSQL和SparkStreaming的类似之处 二.SparkStreaming的运行流程 2.1 图解说明 2.2 文字解说 1.我们在集群中的其中一台机器上提交我 ...
- spark系列-8、Spark Streaming
参考链接:http://spark.apache.org/docs/latest/streaming-programming-guide.html 一.Spark Streaming 介绍 Spark ...
随机推荐
- 基于SpringCloud的Microservices架构实战案例-配置文件属性内容加解密
使用过SpringBoot配置文件的朋友都知道,资源文件中的内容通常情况下是明文显示,安全性就比较低一些.打开application.properties或application.yml,比如mysq ...
- 统计greenplum_postgresql数据占用存储情况
1. 场景描述 因项目数据量略大,每天大概有几百g的存储需求,并且是多项目公用greenplum集群,需要定期检查一下磁盘情况. 2. 解决方案 2.1 按用户/项目统计 2.1.1 SQL语句 SE ...
- Android开发-实现第三方APP跳转
自己创建一个按钮: <Button android:id="@+id/btn_button" android:layout_width="fill_parent&q ...
- C语言指针专题——使用指针要注意这些
本文为原创,欢迎转发: 欢迎关注微博与微信号:C语言编程技术分享 C语言中,指针的概念有点难懂,使用起来稍微不注意,也会遇到各种问题.在本文中,我列举出了几个使用指针不当的方式,希望朋友们在编程实践中 ...
- Socket网络编程系列教程序
C语言的用途相当多,可以用在数据结构.数据库.网络.嵌入式等方面,历经40多年不衰,真是厉害!最近一直想从某一应用方面写一个系列教程,好好地把某一方面讲深讲透. 正好博主对网络方面的编 ...
- WinForm控件之【ListBox】
基本介绍 列表控件,将一个或多个数据项列表展示供选择处理. 常设置属性 DataSource:绑定加载项的数据源,设置属性DisplayMember绑定需要显示字段名: ColumnWidth:当属性 ...
- Spring Bean 的装配方式
Spring Bean 的装配方式 装配 Bean 的三种方式 一个程序中,许多功能模块都是由多个为了实现相同业务而相互协作的组件构成的.而代码之间的相互联系又势必会带来耦合.耦合是个具有两面性的概念 ...
- apache CXF Service 简单使用
cxf介绍 框架官网:cxf.apache.org 支持多种协议: SOAP1.1,1.2 XML/HTTP CORBA(Common Object Request Broker Architectu ...
- Linux系统安装MySQL——.rpm版
0.环境 本文操作系统: CentOS 7.2.1511 x86_64MySQL 版本: 5.7.13 1.下载 MySQL 官方的 Yum Repository 从 MySQL 官网选取合适的 My ...
- python课堂整理15---map, filter,reduce函数
一.map函数 处理序列(可迭代对象)中的每一个元素,得到的结果是一个‘列表’(其实是个迭代器),该‘列表’元素个数及位置与原来一样 理解下面这段代码: num_l = [1, 2, 4, 6] de ...