题目:

给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量。一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设网格的四个边均被水包围。

Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

示例 1:

输入:
11110
11010
11000
00000 输出: 1

示例 2:

输入:
11000
11000
00100
00011 输出: 3

解题思路:

首先明白岛屿的定义:一 1 周围全是 0,即为一个岛屿。(注意:grid 数组内的 1、0 均为char型字符,非整型)

示例1 中所有 1 都可以连接到一起,即所有 1 组成一个岛屿。示例2 中的三个岛屿:左上角四个1、中间一个1、右下角一个一,分别组成三个岛屿。

Flood fill算法是从一个区域中提取若干个连通的点与其他相邻区域区分开(或分别染成不同颜色)的经典算法。因为其思路类似洪水从一个区域扩散到所有能到达的区域而得名。在 GNU Go 和 扫雷 中,Flood Fill算法被用来计算需要被清除的区域。由上述定义可看出该题是典型的Flood fill算法类型例题,将岛屿与水分开,并染成特定颜色,以记录已累加过该岛屿。

每块岛屿可以看成相连的一个个节点,只需把所有相连节点遍历殆尽并标上特殊值以记录该节点已访问过,则遍历殆尽时证明一块岛屿已找到。

三种解题方法:

  • DFS(深度优先搜索):从一个为1的根节点开始访问,从每个相邻1节点向下访问到顶点(周围全是水),依次访问其他相邻1节点到顶点

  • BFS(广度优先搜索):从一个为1的根节点开始访问,每次向下访问一个节点,直到访问到最后一个顶点

  • 并查集:也被称为联合查找数据结构,因为它主要由联合、查找两个过程实现:

    • Find:确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。

    • Union:将两个子集合并成同一个集合。

      针对该题即 先以一个根节点1作为初始节点,判断周围节点是否为1,如果是则新建一个集合并把该节点作为父节点。之后遍历下一个节点,如果是1则查找该节点的父节点(即第一个节点),并把该节点周围为1的节点的父节点全部指向该节点的父节点,以此类推,直到把该块岛屿所有1 节点加入同一个集合。最后集合个数(父节点的个数)即为岛屿数量

DFS:

时间复杂度 : O(M×N),其中 M 和 N 分别为行数和列数。

空间复杂度 : 最坏情况下为 O(M×N),此时整个网格均为陆地,深度优先搜索的深度达到 M×N。

Java:

class Solution {
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) return 0;
int row = grid.length, columns = grid[0].length, count = 0;
for (int i = 0; i < row; i++) {//遍历所有点
for (int j = 0; j < columns; j++) {
if (grid[i][j] == '1') {
dfs(grid, i, j, row, columns);//dfs遍历所有连接的点
count++;//记录岛屿数量
}
}
}
return count;
} private void dfs(char[][] grid, int i, int j, int row, int columns) {
if (i < 0 || j < 0 || i >= row || j >= columns || grid[i][j] == '0') return;//基线条件
grid[i][j] = '0';//遍历过的点置 0
dfs(grid, i + 1, j, row, columns);
dfs(grid, i, j + 1, row, columns);
dfs(grid, i - 1, j, row, columns);
dfs(grid, i, j - 1, row, columns);
}
}

Python:

class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
if not grid or len(grid) == 'o': return 0
row, columns = len(grid), len(grid[0])
count = 0
for i in range(row):
for j in range(columns):
if grid[i][j] == '1':
self.dfs(grid, i, j, row, columns)
count += 1
return count def dfs(self, grid: List[List[str]], i: int, j: int, row: int, columns: int):
if i >= row or i < 0 or j >= columns or j < 0 or grid[i][j] == '0': return
grid[i][j] = '0'
self.dfs(grid, i - 1, j, row, columns)
self.dfs(grid, i, j - 1, row, columns)
self.dfs(grid, i + 1, j, row, columns)
self.dfs(grid, i, j + 1, row, columns)

BFS:

时间复杂度 : O(M×N),其中 M 和 N 分别为行数和列数。

空间复杂度 : O( min(M,N) ),在最坏的情况下(全部为陆地),队列的大小可以达到 min(M,N)。

Java:

class Solution {
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) return 0;
int row = grid.length, columns = grid[0].length, count = 0;
for (int i = 0; i < row; i++) {
for (int j = 0; j < columns; j++) {//遍历所有节点
if (grid[i][j] == '1') {
bfs(grid, i, j, row, columns);
count++;//记录岛屿数量
}
}
}
return count;
} private void bfs(char[][] grid, int i, int j, int row, int columns) {
Queue<Integer> loc = new LinkedList<>();//队列暂存值为 1 的点
loc.add(i * columns + j);//暂存该点位置,也可以用一个[i,j]数组表示,不过占用空间也会大一倍
while (!loc.isEmpty()) {
int id = loc.remove();//取出位置
int r = id / columns, c = id % columns;//分解位置得到索引
if (r - 1 >= 0 && grid[r - 1][c] == '1') {
loc.add((r - 1) * columns + c);
grid[r - 1][c] = '0';
}
if (r + 1 < row && grid[r + 1][c] == '1') {
loc.add((r + 1) * columns + c);
grid[r + 1][c] = '0';
}
if (c - 1 >= 0 && grid[r][c - 1] == '1') {
loc.add(r * columns + c - 1);
grid[r][c - 1] = '0';
}
if (c + 1 < columns && grid[r][c + 1] == '1') {
loc.add(r * columns + c + 1);
grid[r][c + 1] = '0';
}
}
}
}

Python3:

class Solution:
def numIslands(self, grid: List[List[str]]) -> int:
if not grid or len(grid) == 'o': return 0
row, columns = len(grid), len(grid[0])
count = 0
for i in range(row):
for j in range(columns):
if grid[i][j] == '1':
self.bfs(grid, i, j, row, columns)
count += 1
return count def bfs(self, grid: List[List[str]], i: int, j: int, row: int, columns: int):
queue = collections.deque()
queue.append((i, j)) # 位置以元组存入队列
while queue:
r, c = queue.popleft()
if r + 1 < row and grid[r + 1][c] == '1':
queue.append((r + 1, c))
grid[r + 1][c] = '0'
if r - 1 >= 0 and grid[r - 1][c] == '1':
queue.append((r - 1, c))
grid[r - 1][c] = '0'
if c + 1 < columns and grid[r][c + 1] == '1':
queue.append((r, c + 1))
grid[r][c + 1] = '0'
if c - 1 >= 0 and grid[r][c - 1] == '1':
queue.append((r, c - 1))
grid[r][c - 1] = '0'

并查集:

并查集这种解法冗杂且鸡肋,效率很低,以下java代码参考自LeetCode。简单了解其思想扩展一下思路即可:

Java:

class Solution {
class UnionFind {
int count; //计数
int[] parent;
int[] rank; public UnionFind(char[][] grid) {
count = 0;
int m = grid.length, n = grid[0].length;
parent = new int[m * n];
rank = new int[m * n];
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == '1') {
parent[i * n + j] = i * n + j;
++count;
}
rank[i * n + j] = 0;
}
}
}
public int find(int i) {
if (parent[i] != i) parent[i] = find(parent[i]);
return parent[i];
}
public void union(int x, int y) {
int rootx = find(x);
int rooty = find(y);
if (rootx != rooty) {
if (rank[rootx] > rank[rooty]) {
parent[rooty] = rootx;
} else if (rank[rootx] < rank[rooty]) {
parent[rootx] = rooty;
} else {
parent[rooty] = rootx;
rank[rootx] += 1;
}
--count;
}
}
public int getCount() {
return count;
}
}
public int numIslands(char[][] grid) {
if (grid == null || grid.length == 0) return 0;
int row = grid.length, columns = grid[0].length;
UnionFind uf = new UnionFind(grid);
for (int i = 0; i < row; ++i) {
for (int j = 0; j < columns; ++j) {
if (grid[i][j] == '1') {
grid[i][j] = '0';
if (i - 1 >= 0 && grid[i - 1][j] == '1') uf.union(i * columns + j, (i - 1) * columns + j);
if (i + 1 < row && grid[i + 1][j] == '1') uf.union(i * columns + j, (i + 1) * columns + j);
if (j - 1 >= 0 && grid[i][j - 1] == '1') uf.union(i * columns + j, i * columns + j - 1);
if (j + 1 < columns && grid[i][j + 1] == '1') uf.union(i * columns + j, i * columns + j + 1);
}
}
}
return uf.getCount();
}
}

欢迎关注微.信公.众号一起加油吖:爱写Bug

LeetCode 200:岛屿数量 Number of Islands的更多相关文章

  1. Java实现 LeetCode 200 岛屿数量

    200. 岛屿数量 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. ...

  2. 力扣Leetcode 200. 岛屿数量

    岛屿数量 给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量. 岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成. 此外,你可以假设该网 ...

  3. LeetCode 200. 岛屿数量

    习题地址 https://leetcode-cn.com/problems/number-of-islands/ 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水 ...

  4. Leetcode之深度优先搜索(DFS)专题-200. 岛屿数量(Number of Islands)

    Leetcode之深度优先搜索(DFS)专题-200. 岛屿数量(Number of Islands) 深度优先搜索的解题详细介绍,点击 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计 ...

  5. Leetcode 200.岛屿的数量 - DFS、BFS

    Leetcode 200 岛屿的数量: DFS利用函数调用栈保证了检索顺序, BFS则需要自己建立队列,把待检索对象按规则入队. class Solution { // DFS解法,8ms/10.7M ...

  6. [LeetCode]695. 岛屿的最大面积(DFS/BFS)、200. 岛屿数量(DFS/BFS待做/并差集待做)

    695. 岛屿的最大面积 题目 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合.你可以假设二维矩阵的四个边缘都被 ...

  7. Leetcode题目200.岛屿数量(BFS+DFS+并查集-中等)

    题目描述: 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 ...

  8. Leetcode 200. 岛屿的个数(扩展)

    1.题目描述 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 ...

  9. LeetCode 200. 岛屿的个数(Number of Islands)

    题目描述 给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1 ...

随机推荐

  1. IT兄弟连 HTML5教程 了解HTML5的主流应用1

    在很多人眼里,HTML5与互联网营销密切相关,但其实从开发者的角度而言,它是一种网页标准,定义了浏览器语言的编写规范.伴随HTML5标准尘埃落定,浏览器对HTML5特性的逐步支持,再加上国内对HTML ...

  2. [转]在.NET Core 2.x中将多个强类型设置实例与命名选项一起使用

    自1.0版之前,ASP.NET Core已使用“ 选项”模式配置强类型设置对象.从那时起,该功能获得了更多功能.例如,引入了ASP.NET Core 1.1 IOptionsSnapshot,它允许您 ...

  3. MongoDB for OPS 03:分片 shard 集群

    写在前面的话 上一节的复制集也就是主从能够解决我们高可用和数据安全性问题,但是无法解决我们的性能瓶颈问题.所以针对性能瓶颈,我们需要采用分布式架构,也就是分片集群,sharding cluster! ...

  4. Vue实现简单的列表金额计算效果(简易购物车)

    效果图: 使用技术:v-for v-bind v-on实现简单的列表选中绑定操作 代码: <!DOCTYPE html> <html> <head> <met ...

  5. 最全的.NET Core跨平台微服务学习资源

    一.Asp.net Core基础 微软中文官网:https://docs.microsoft.com/zh-cn/aspnet/core/getting-started/ 微软英文官网:https:/ ...

  6. LinuxShell脚本——认识Shell脚本

    LinuxShell脚本——认识Shell脚本 摘要:本文主要介绍了Shell脚本的一些基本知识. 什么是Shell脚本 shell脚本是利用shell的功能所写的一个程序,这个程序是使用纯文本文件, ...

  7. angular版聊天室|仿微信界面IM聊天|NG2+Node聊天实例

    一.项目介绍 运用angular+angular-cli+angular-router+ngrx/store+rxjs+webpack+node+wcPop等技术实现开发的仿微信angular版聊天室 ...

  8. 关于 SONY WF1000XM3 在 Windows 10 下蓝牙连接只有 Handfree 没有 Stereo 模式

    应该是驱动适配问题,目前粗暴的解决方案貌似下载安装一个 Intel APTX 驱动就可以了: https://www.dell.com/support/home/cn/zh/cndhs1/driver ...

  9. 1041. Robot Bounded In Circle

    本题题意: 一开始一个机器人站在了(0,0)上,面朝的方向是北,收到三个序列G,L,R. G:直走 L:向左转 R:向右转 按序执行,永远重复. 返回TRUE,如果处在一个圈. 第一个卡住的点: 1. ...

  10. 74HC245引脚定义 使用方法

    典型的CMOS型三态缓冲门电路,八路信号收发器. 由于单片机或CPU的数据/地址/控制总线端口都有一定的负载能力,如果负载超过其负载能力,一般应加驱动器. 主要应用于大屏显示 引脚定义 DIR:方向控 ...