python基础(22):模块、包
1. 模块
1.1 什么是模块
别人写好的函数、变量、方法放在一个文件里 (这个文件可以被我们直接使用)这个文件就是个模块
常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
但其实import加载的模块分为四个通用类别:
1.使用python编写的代码(.py文件)
2.已被编译为共享库或DLL的C或C++扩展
3.包好一组模块的包
4.使用C编写并链接到python解释器的内置模块
1.2 为什么要使用模块
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用。
1.3 如何使用模块
1.3.1 import
示例文件:自定义模块my_module.py
#my_module.py
print('from the my_module.py') money=1000 def read1():
print('my_module->read1->money',money) def read2():
print('my_module->read2 calling read1')
read1() def change():
global money
money=0
1.3.1.1
模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入。python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载大内存中的模块对象增加了一次引用,不会重新执行模块内的语句),如下 :
#demo.py
import my_module #只在第一次导入时才执行my_module.py内代码,此处的显式效果是只打印一次'from the my_module.py',当然其他的顶级代码也都被执行了,只不过没有显示效果.
import my_module
import my_module
import my_module '''
执行结果:
from the my_module.py
'''
我们可以从sys.modules中找到当前已经加载的模块,sys.modules是一个字典,内部包含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。
每个模块都是一个独立的名称空间,定义在这个模块中的函数,把这个模块的名称空间当做全局名称空间,这样我们在编写自己的模块时,就不用担心我们定义在自己模块中全局变量会在被导入时,与使用者的全局变量冲突。
测试一:
#测试一:money与my_module.money不冲突
#demo.py
import my_module
money=10
print(my_module.money) '''
执行结果:
from the my_module.py
'''
测试二:
#测试二:read1与my_module.read1不冲突
#demo.py
import my_module
def read1():
print('========')
my_module.read1() '''
执行结果:
from the my_module.py
my_module->read1->money 1000
'''
测试三:
#测试三:执行my_module.change()操作的全局变量money仍然是my_module中的
#demo.py
import my_module
money=1
my_module.change()
print(money) '''
执行结果:
from the my_module.py
'''
总结:首次导入模块my_module时会做三件事:
1.为源文件(my_module模块)创建新的名称空间,在my_module中定义的函数和方法若是使用到了global时访问的就是这个名称空间。
2.在新创建的命名空间中执行模块中包含的代码,见初始导入import my_module
提示:导入模块时到底执行了什么?
In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition enters the function name in the module’s global symbol table.
事实上函数定义也是“被执行”的语句,模块级别函数定义的执行将函数名放入模块全局名称空间表,用globals()可以查看。
3.创建名字my_module来引用该命名空间
这个名字和变量名没什么区别,都是‘第一类的’,且使用my_module.名字的方式可以访问my_module.py文件中定义的名字,my_module.名字与test.py中的名字来自两个完全不同的地方。
示例用法一:
有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能。
#mysql.py
def sqlparse():
print('from mysql sqlparse')
#oracle.py
def sqlparse():
print('from oracle sqlparse') #test.py
db_type=input('>>: ')
if db_type == 'mysql':
import mysql as db
elif db_type == 'oracle':
import oracle as db db.sqlparse()
示范用法二:
为已经导入的模块起别名的方式对编写可扩展的代码很有用,假设有两个模块xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块,例如:
if file_format == 'xml':
import xmlreader as reader
elif file_format == 'csv':
import csvreader as reader
data=reader.read_date(filename)
在一行导入多个模块
import sys,os,re
1.3.2 from ... import...
对比import my_module,会将源文件的名称空间'my_module'带到当前名称空间中,使用时必须是my_module名字的方式。
而from语句相当于import,也会创建新的名称空间,但是将my_module中的名字直接导入到当前的名称空间中,在当前名称空间中,直接使用名字就可以了、
from my_module import read1,read2
这样在当前位置直接使用read1和read2就好了,执行时,仍然以my_module.py文件全局名称空间。
#测试一:导入的函数read1,执行时仍然回到my_module.py中寻找全局变量money
#demo.py
from my_module import read1
money=1000
read1()
'''
执行结果:
from the my_module.py
spam->read1->money 1000
''' #测试二:导入的函数read2,执行时需要调用read1(),仍然回到my_module.py中找read1()
#demo.py
from my_module import read2
def read1():
print('==========')
read2() '''
执行结果:
from the my_module.py
my_module->read2 calling read1
my_module->read1->money 1000
'''
如果当前有重名read1或者read2,那么会有覆盖效果。
#测试三:导入的函数read1,被当前位置定义的read1覆盖掉了
#demo.py
from my_module import read1
def read1():
print('==========')
read1()
'''
执行结果:
from the my_module.py
==========
'''
需要特别强调的一点是:python中的变量赋值不是一种存储操作,而只是一种绑定关系,如下:
from my_module import money,read1
money=100 #将当前位置的名字money绑定到了100
print(money) #打印当前的名字
read1() #读取my_module.py中的名字money,仍然为1000 '''
from the my_module.py
my_module->read1->money 1000
'''
也支持as
from my_module import read1 as read
也支持导入多行
from my_module import (read1,
read2,
money)
from my_module import * 把my_module中所有的不是以下划线(_)开头的名字都导入到当前位置,大部分情况下我们的python程序不应该使用这种导入方式,因为*你不知道你导入什么名字,很有可能会覆盖掉你之前已经定义的名字。而且可读性极其的差,在交互式环境中导入时没有问题。
from my_module import * #将模块my_module中所有的名字都导入到当前名称空间
print(money)
print(read1)
print(read2)
print(change) '''
执行结果:
from the my_module.py
<function read1 at 0x1012e8158>
<function read2 at 0x1012e81e0>
<function change at 0x1012e8268>
'''
在my_module.py中新增一行
__all__=['money','read1'] #这样在另外一个文件中用from my_module import *就这能导入列表中规定的两个名字
如果my_module.py中的名字前加_,即_money,则from my_module import *,则_money不能被导入
考虑到性能的原因,每个模块只被导入一次,放入字典sys.modules中,如果你改变了模块的内容,你必须重启程序,python不支持重新加载或卸载之前导入的模块。
有的同学可能会想到直接从sys.modules中删除一个模块不就可以卸载了吗,注意了,你删了sys.modules中的模块对象仍然可能被其他程序的组件所引用,因而不会被清除。
特别的对于我们引用了这个模块中的一个类,用这个类产生了很多对象,因而这些对象都有关于这个模块的引用。
如果只是你想交互测试的一个模块,使用 importlib.reload(), e.g. import importlib; importlib.reload(modulename),这只能用于测试环境。
aa.py:
def func1():
print('func1')
测试代码:
import time,importlib
import aa time.sleep(20)
# importlib.reload(aa)
aa.func1()
在20秒的等待时间里,修改aa.py中func1的内容,等待test.py的结果。
打开importlib注释,重新测试。
1.3.3 把模块当做脚本执行
我们可以通过模块的全局变量__name__来查看模块名:
当做脚本运行:
__name__ 等于'__main__'
当做模块导入:
__name__= 模块名
作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__ == '__main__':
def fib(n):
a, b = 0, 1
while b < n:
print(b, end=' ')
a, b = b, a+b
print() if __name__ == "__main__":
print(__name__)
num = input('num :')
fib(int(num))
1.3.4 模块搜索路径
python解释器在启动时会自动加载一些模块,可以使用sys.modules查看。
在第一次导入某个模块时(比如my_module),会先检查该模块是否已经被加载到内存中(当前执行文件的名称空间对应的内存),如果有则直接引用。
如果没有,解释器则会查找同名的内建模块,如果还没有找到就从sys.path给出的目录列表中依次寻找my_module.py文件。
所以总结模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块
sys.path的初始化的值来自于:
The directory containing the input script (or the current directory when no file is specified).
PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).
The installation-dependent default.
需要特别注意的是:我们自定义的模块名不应该与系统内置模块重名。虽然每次都说,但是仍然会有人不停的犯错。
在初始化后,python程序可以修改sys.path,路径放到前面的优先于标准库被加载。
>>> import sys
>>> sys.path.append('/a/b/c/d')
>>> sys.path.insert(0,'/x/y/z') #排在前的目录,优先被搜索
注意:搜索时按照sys.path中从左到右的顺序查找,位于前的优先被查找,sys.path中还可能包含.zip归档文件和.egg文件,python会把.zip归档文件当成一个目录去处理。
#首先制作归档文件:zip module.zip foo.py bar.py import sys
sys.path.append('module.zip')
import foo,bar #也可以使用zip中目录结构的具体位置
sys.path.append('module.zip/lib/python') #windows下的路径不加r开头,会语法错误
sys.path.insert(0,r'C:\Users\Administrator\PycharmProjects\a')
至于.egg文件是由setuptools创建的包,这是按照第三方python库和扩展时使用的一种常见格式,.egg文件实际上只是添加了额外元数据(如版本号,依赖项等)的.zip文件。
需要强调的一点是:只能从.zip文件中导入.py,.pyc等文件。使用C编写的共享库和扩展块无法直接从.zip文件中加载(此时setuptools等打包系统有时能提供一种规避方法),且从.zip中加载文件不会创建.pyc或者.pyo文件,因此一定要事先创建他们,来避免加载模块是性能下降。
官网解释:
#官网链接:https://docs.python.org/3/tutorial/modules.html#the-module-search-path
搜索路径:
当一个命名为my_module的模块被导入时
解释器首先会从内建模块中寻找该名字
找不到,则去sys.path中找该名字 sys.path从以下位置初始化
执行文件所在的当前目录
PTYHONPATH(包含一系列目录名,与shell变量PATH语法一样)
依赖安装时默认指定的 注意:在支持软连接的文件系统中,执行脚本所在的目录是在软连接之后被计算的,换句话说,包含软连接的目录不会被添加到模块的搜索路径中 在初始化后,我们也可以在python程序中修改sys.path,执行文件所在的路径默认是sys.path的第一个目录,在所有标准库路径的前面。这意味着,当前目录是优先于标准库目录的,需要强调的是:我们自定义的模块名不要跟python标准库的模块名重复,除非你是故意的,傻叉。
1.3.5 编译python文件
为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,my_module.py模块会被缓存成__pycache__/my_module.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。
Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的。
python解释器在以下两种情况下不检测缓存
1.如果是在命令行中被直接导入模块,则按照这种方式,每次导入都会重新编译,并且不会存储编译后的结果(python3.3以前的版本应该是这样)
python -m my_module.py
2.如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下
提示:
1.模块名区分大小写,foo.py与FOO.py代表的是两个模块
2.你可以使用-O或者-OO转换python命令来减少编译模块的大小
-O转换会帮你去掉assert语句
-OO转换会帮你去掉assert语句和__doc__文档字符串
由于一些程序可能依赖于assert语句或文档字符串,你应该在在确认需要的情况下使用这些选项。
3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的
4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件
模块可以作为一个脚本(使用python -m compileall)编译Python源
python -m compileall /module_directory 递归着编译
如果使用python -O -m compileall /module_directory -l则只一层
命令行里使用compile()函数时,自动使用python -O -m compileall
详见:https://docs.python.org/3/library/compileall.html#module-compileall
2. 包
包是一种通过使用‘.模块名’来组织python模块名称空间的方式。
1. 无论是import形式还是from...import形式,凡是在导入语句中(而不是在使用时)遇到带点的,都要第一时间提高警觉:这是关于包才有的导入语法。
2. 包是目录级的(文件夹级),文件夹是用来组成py文件(包的本质就是一个包含__init__.py文件的目录)。
3. import导入文件时,产生名称空间中的名字来源于文件,import 包,产生的名称空间的名字同样来源于文件,即包下的__init__.py,导入包本质就是在导入该文件。
强调:
1. 在python3中,即使包下没有__init__.py文件,import 包仍然不会报错,而在python2中,包下一定要有该文件,否则import 包报错。
2. 创建包的目的不是为了运行,而是被导入使用,记住,包只是模块的一种形式而已,包即模块。
包A和包B下有同名模块也不会冲突,如A.a与B.a来自俩个命名空间
创建目录代码:
import os
os.makedirs('glance/api')
os.makedirs('glance/cmd')
os.makedirs('glance/db')
l = []
l.append(open('glance/__init__.py','w'))
l.append(open('glance/api/__init__.py','w'))
l.append(open('glance/api/policy.py','w'))
l.append(open('glance/api/versions.py','w'))
l.append(open('glance/cmd/__init__.py','w'))
l.append(open('glance/cmd/manage.py','w'))
l.append(open('glance/db/models.py','w'))
map(lambda f:f.close() ,l)
目录结构:
glance/ #Top-level package ├── __init__.py #Initialize the glance package ├── api #Subpackage for api │ ├── __init__.py │ ├── policy.py │ └── versions.py ├── cmd #Subpackage for cmd │ ├── __init__.py │ └── manage.py └── db #Subpackage for db ├── __init__.py └── models.py
文件内容:
#文件内容 #policy.py
def get():
print('from policy.py') #versions.py
def create_resource(conf):
print('from version.py: ',conf) #manage.py
def main():
print('from manage.py') #models.py
def register_models(engine):
print('from models.py: ',engine)
2.1 注意事项
1.关于包相关的导入语句也分为import和from ... import ...两种,但是无论哪种,无论在什么位置,在导入时都必须遵循一个原则:凡是在导入时带点的,点的左边都必须是一个包,否则非法。可以带有一连串的点,如item.subitem.subsubitem,但都必须遵循这个原则。
2.对于导入后,在使用时就没有这种限制了,点的左边可以是包,模块,函数,类(它们都可以用点的方式调用自己的属性)。
3.对比import item 和from item import name的应用场景:
如果我们想直接使用name那必须使用后者。
2.2 import
我们在与包glance同级别的文件中测试
import glance.db.models
glance.db.models.register_models('mysql')
2.3 from...import...
需要注意的是from后import导入的模块,必须是明确的一个不能带点,否则会有语法错误,如:from a import b.c是错误语法
我们在与包glance同级别的文件中测试
from glance.db import models
models.register_models('mysql') from glance.db.models import register_models
register_models('mysql')
2.4 __init_.py文件
不管是哪种方式,只要是第一次导入包或者是包的任何其他部分,都会依次执行包下的__init__.py文件(我们可以在每个包的文件内都打印一行内容来验证一下),这个文件可以为空,但是也可以存放一些初始化包的代码。
2.5 from glance.api import *
在讲模块时,我们已经讨论过了从一个模块内导入所有*,此处我们研究从一个包导入所有*。
此处是想从包api中导入所有,实际上该语句只会导入包api下__init__.py文件中定义的名字,我们可以在这个文件中定义__all___:
#在__init__.py中定义
x=10 def func():
print('from api.__init.py') __all__=['x','func','policy']
此时我们在于glance同级的文件中执行from glance.api import *就导入__all__中的内容(versions仍然不能导入)。
glance/ ├── __init__.py ├── api │ ├── __init__.py __all__ = ['policy','versions'] │ ├── policy.py │ └── versions.py ├── cmd __all__ = ['manage'] │ ├── __init__.py │ └── manage.py └── db __all__ = ['models'] ├── __init__.py └── models.py from glance.api import *
policy.get() from glance.api import *
2.6 绝对导入和相对导入
我们的最顶级包glance是写给别人用的,然后在glance包内部也会有彼此之间互相导入的需求,这时候就有绝对导入和相对导入两种方式:
绝对导入:以glance作为起始
相对导入:用.或者..的方式最为起始(只能在一个包中使用,不能用于不同目录内)
例如:我们在glance/api/version.py中想要导入glance/cmd/manage.py
在glance/api/version.py #绝对导入
from glance.cmd import manage
manage.main() #相对导入
from ..cmd import manage
manage.main()
测试结果:注意一定要在于glance同级的文件中测试
from glance.api import versions
注意:在使用pycharm时,有的情况会为你多做一些事情,这是软件相关的东西,会影响你对模块导入的理解,因而在测试时,一定要回到命令行去执行,模拟我们生产环境,你总不能拿着pycharm去上线代码吧!
特别需要注意的是:可以用import导入内置或者第三方模块(已经在sys.path中),但是要绝对避免使用import来导入自定义包的子模块(没有在sys.path中),应该使用from... import ...的绝对或者相对导入,且包的相对导入只能用from的形式。
比如我们想在glance/api/versions.py中导入glance/api/policy.py,有的同学一抽这俩模块是在同一个目录下,十分开心的就去做了,它直接这么做。
#在version.py中 import policy
policy.get()
没错,我们单独运行version.py是一点问题没有的,运行version.py的路径搜索就是从当前路径开始的,于是在导入policy时能在当前目录下找到。
但是你想啊,你子包中的模块version.py极有可能是被一个glance包同一级别的其他文件导入,比如我们在于glance同级下的一个test.py文件中导入version.py,如下:
from glance.api import versions '''
执行结果:
ImportError: No module named 'policy'
''' '''
分析:
此时我们导入versions在versions.py中执行
import policy需要找从sys.path也就是从当前目录找policy.py,
这必然是找不到的
'''
绝对导入:
glance/ ├── __init__.py from glance import api
from glance import cmd
from glance import db ├── api │ ├── __init__.py from glance.api import policy
from glance.api import versions │ ├── policy.py │ └── versions.py ├── cmd from glance.cmd import manage │ ├── __init__.py │ └── manage.py └── db from glance.db import models ├── __init__.py └── models.py
相对导入:
glance/ ├── __init__.py from . import api #.表示当前目录
from . import cmd
from . import db ├── api │ ├── __init__.py from . import policy
from . import versions │ ├── policy.py │ └── versions.py ├── cmd from . import manage │ ├── __init__.py │ └── manage.py from ..api import policy
#..表示上一级目录,想再manage中使用policy中的方法就需要回到上一级glance目录往下找api包,从api导入policy └── db from . import models ├── __init__.py └── models.py
2.7 单独导入包
单独导入包名称时不会导入包中所有包含的所有子模块,如
#在与glance同级的test.py中
import glance
glance.cmd.manage.main() '''
执行结果:
AttributeError: module 'glance' has no attribute 'cmd'
'''
解决方法:
#glance/__init__.py
from . import cmd #glance/cmd/__init__.py
from . import manage
执行:
#在于glance同级的test.py中
import glance
glance.cmd.manage.main()
千万别问:__all__不能解决吗,__all__是用于控制from...import * 。
2.7.1 import glance之后直接调用模块中的方法
glance/ ├── __init__.py from .api import *
from .cmd import *
from .db import *
├── api │ ├── __init__.py __all__ = ['policy','versions'] │ ├── policy.py │ └── versions.py ├── cmd __all__ = ['manage'] │ ├── __init__.py │ └── manage.py └── db __all__ = ['models'] ├── __init__.py └── models.py import glance
policy.get()
python基础(22):模块、包的更多相关文章
- 二十五. Python基础(25)--模块和包
二十五. Python基础(25)--模块和包 ● 知识框架 ● 模块的属性__name__ # my_module.py def fun1(): print("Hello& ...
- Python 基础教程之包和类的用法
Python 基础教程之包和类的用法 建立一个文件夹filePackage 在filePackage 文件夹内创建 __init__.py 有了 __init__.py ,filePackage才算是 ...
- python基础——第三方模块
python基础——第三方模块 在Python中,安装第三方模块,是通过包管理工具pip完成的. 如果你正在使用Mac或Linux,安装pip本身这个步骤就可以跳过了. 如果你正在使用Window ...
- python基础——使用模块
python基础——使用模块 Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用. 我们以内建的sys模块为例,编写一个hello的模块: #!/usr/bin/env ...
- Python第八天 模块 包 全局变量和内置变量__name__ Python path
Python第八天 模块 包 全局变量和内置变量__name__ Python path 目录 Pycharm使用技巧(转载) Python第一天 安装 shell 文件 Pyt ...
- 二十二. Python基础(22)--继承
二十二. Python基础(22)--继承 ● 知识框架 ● 继承关系中self的指向 当一个对象调用一个方法时,这个方法的self形参会指向这个对象 class A: def get(s ...
- python 基础之 模块
Python 基础之模块 一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 就是一个python文件中定义好了类和方法,实现了一些功能,可以被别的python文 ...
- Python入门基础学习(模块,包)
Python基础学习笔记(五) 模块的概念:模块是python程序架构的一个核心概念 每个以拓展名py结尾的python源代码文件都是一个模块 模块名同样也是一个标识符,需要符合标识符的命名规则 在模 ...
- 【Python之路】第六篇--Python基础之模块
模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...
随机推荐
- 软件文档写作-plantuml画用例图和时序图
背景 当下的软件开发人员,不可避免的需要输出一些软件设计文档,作为一个软件工程专业毕业的工程师,最常用的设计工具就是UML,使用UML工具绘制一些软件相关的图,是必备技能,也是输出的技术文档中的重要组 ...
- fjnu2019第二次友谊赛 F题
### 题目链接 ### 题目大意: 一开始手上有 z 个钱币,有 n 天抉择,m 种投资方案,在每天中可以选择任意种投资方案.任意次地花费 x 个钱币(手上的钱币数不能为负),使得在 n 天结束后, ...
- windows 使用 curl 命令
什么是curl命令? curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种Linux发行版中,并且有DOS和Win32.Win64下的移植版本. 如何在windo ...
- 匿名函数,内置函数II,闭包
1. 匿名函数 匿名函数,顾名思义就是没有名字的函数,那么什么函数没有名字呢?这个就是我们以后面试或者工作中经常用匿名函数 lambda,也叫一句话函数. 现在有一个需求:你们写一个函数,此函数接收两 ...
- Zimbra
第一步:利用XXE读取配置文件 这里利用了CVE-2019-9670漏洞来读取配置文件,你需要在自己的VPS服务器上放置一个dtd文件,并使该文件能够通过HTTP访问.为了演示,我在GitHub上创建 ...
- 【Nginx】安装&环境配置
安装依赖包 安装make:yum -y install gcc automake autoconf libtool make 安装g++:yum -y install gcc gcc-c++ 安装pc ...
- Android Studio添加文件注释头模板集合
Android Studio中设置方式 File -> Settings -> Editor -> File and Code Templates -> 右侧File标签 -& ...
- Python语法速查: 4. 字符串常用操作
返回目录 (1)字符串常用方法 Python3中,字符串全都用Unicode形式,所以省去了很多以前各种转换与声明的麻烦.字符串属于序列,所有序列可用的方法(比如切片等)都可用于字符串. 注意:字符串 ...
- CodeForces - 722C(思维+倒着并查集)
题意 https://vjudge.net/problem/CodeForces-722C 给你一个由n个非负整数组成的数列 a1 ,a2 ,...,an . 你将要一个一个摧毁这个数列中的数. ...
- JVM GC算法 垃圾回收器
JVM的垃圾回收算法有三种: 1.标记-清除(mark-sweep):啥都不说,直接上图 2.标记-整理(mark-compact) 3.复制(copy) 分代收集算法 ...