简单的量子算法(二):Simon's Algorithm
前情回顾:
简单的量子算法(一):Hadamard 变换、Parity Problem
好的,现在开始正版的故事,Simon’s Algorithm
问题:
有一个secret string,是n位的0,1串 \(s \in \{0,1 \} ^n\)
现在有一个黑盒子,f(x),我们对他唯一的了解就是 \(f(x)=f(x \oplus s)\) ,输入的x也是n位的0,1串 \(x \in \{0,1 \} ^n\)
请问,要多少次,我们可以找到这个secret string?
经典解法:
如果我们能找到 \(x\) 和 \(x \oplus s\) ,那么非常容易,就可以得到s,只要 \(x\oplus x\oplus s\) 。
那么如果找到两个输入拥有相同的输出呢?
这个问题其实是另一个大家都很熟悉的问题的变形,一群人中,要多少人就有两个人的生日是相同的,印象中,23人两个人的生日是相同的概率就大于50%了,如果有60个人,那么两个人生日相同的概率就超过99%了。
这个问题和生日问题的解法是一样的,就不再累述了,想要知道的请搜索生日问题,在这里,我们给出一个大概的答案,是 \(2^{n/2}\) c次。
量子解法:
量子解法一共有三步:
- set up random superposition $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$
- Fourier Sample to get a random y: \(y·s=0 (\mod 2)\)
- repeat step n-1 times to generate n-1 linear equation.
接下来,我们来一步一步的看每个步骤在做什么,以及怎么做:
第一步,制造叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$ ,这个可以通过图a实现。
首先通过第一个\(H ^{\otimes n}\) 门,我们n比特的 \(|0\rangle\) 就成功的变成了叠加态 $\frac{1}{2^{\frac{n}{2}}} \sum_x |x\rangle $
和 \(|b\rangle\) 一起通过 \(U_f\) ,得到的结果是 $\frac{1}{2^{\frac{n}{2}}} \sum_x |x\rangle|b\oplus f(x) \rangle $
测量 \(|b\oplus f(x) \rangle\) ,只有结果是测量结果的 \(|x\rangle\)还在,其他的 \(|x\rangle\) 都会坍缩,基于这个黑盒子的特性,那么只有 $|r\rangle $ 和 \(|r \oplus s \rangle\) 会留下来,因为他们的f(x)是一样的,r是任意的一个序列,测量的结果对应哪个r就是哪个r。
至此我们得到了想要的叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$
第二步,Fourier Sampling
对我们得到的叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$ Fourier Sampling
再次通过\(H ^{\otimes n}\) 我们能得到什么?
依照我们在简单的量子算法(一)中的结论,我们知道 \(H^{\otimes n} |u\rangle = \sum_x \frac{-1^{u·x}}{2^{\frac{n}{2}}} |x\rangle\) 。
那么
\[\begin{align} H^{\otimes n} ( \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle) &= \frac{1}{\sqrt2}\sum_x \frac{-1^{r·x}}{2^{n/2}} |x\rangle+\frac{1}{\sqrt2}\sum_x \frac{-1^{(r\oplus s)·x}}{2^{n/2}} |x\rangle \\ &=\sum_x (\frac{-1^{r·x}}{2^{(n+1)/2}}+\frac{-1^{(r\oplus s)·x}}{2^{(n+1)/2}}) |x\rangle \\ &= \sum_x\frac{1^{r·x}+(-1)^{(r\oplus s)·x}}{2^{(n+1)/2}}|x\rangle \end{align}\]
此时,我们的问题已经集中在了 \(1^{r·x}+(-1)^{(r\oplus s)·x}\) 上。
\((-1)^{(r\oplus s)·x}\) 可以写成\((-1)^{s·x}*(-1)^{r·x}\) (至于为什么可以,大家可以试一下都是按位操作,一共也就4种可能
那么每种可能的概率的公式就可以写成\(\frac{((-1)^{s·x}+1)*(-1)^{r·x}}{2^{(n+1/2)}}\)
如果 \(s·x=0\) 那么,这个概率正好为 \(\frac{(-1)^{r·z}}{2^{(n-1)/2}}\)
如果 \(s·x=-1\) 那么,这个概率正好为0
那么这又说明了什么呢?
这个说明只要我们测量 \(|x\rangle\) ,那么我们得到的x一定是 \(s·x=0\) 的,因为不为0的都被抵消了。
那么得到了x,又意味着什么呢?
\(s·x=0\) 事实上我们是得到了一个等式 $s_1x_1+s_2x_2+……+s_nx_n =0 \mod 2 $
第三步:
如果我们把第一次测量得到的x编号为 \(x^1\) ,那么我们得到了等式 $s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
第二次测量,得到等式 $s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
以此类推,测量n-1次,得到了n-1个等式的方程式组。
$s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
$s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $
……
$s_1x_1^{n-1}+s_2x_2^{n-1}+……+s_nx_n^{n-1} =0 \mod 2 $
n-1个等式,n个未知数( \(s_1,s_2,……,s_n\) ),一般来说会有两组解,一组是全零的平凡解,这个是我们不要的,而另一组解就是我们的答案 \(s\) 。
成功的概率:
上述的解方程有一个前提,那就是这是一个线性方程组,如果这个不是线性的,那么测量n-1次是不可能得答案的。
那么我测量得到的x组成的方程是线性方程的概率是多少呢?
我们可以列一个表格来看看:
失败的情况 | 失败的概率 | 成功的概率 | |
---|---|---|---|
\(x^1\) | 0 | \(\frac{1}{2^{n-1}}\) | \(1-\frac{1}{2^{n-1}}\) |
\(x^2\) | 0、 \(x^1\) | \(\frac{2}{2^{n-1}}\) | \(1-\frac{1}{2^{n-2}}\) |
\(x^3\) | 0 、 \(x^1\) 、\(x^2\) 、\(x^1+x^2\) | \(\frac{4}{2^{n-1}}\) | \(1-\frac{1}{2^{n-3}}\) |
…… | …… | ………… | \(1-\frac{1}{2^{n-1}}\) |
\(x^{n-1}\) | 0 、 \(x^1\) ……\(x^1+x^2\)……\(x^1+x^2+……+x^n-2\) | \(\frac{2^{n-2}}{2^{n-1}}\) | \(1-\frac{1}{2}\) |
每次的测量失败的情况分为以下三种情况:
- 测量出来全是0
- 测量出来结果和前面的是一样的
- 测量出来的结果是前面测量结果的线性组合
因为这里算的成功概率都是独立的成功概率,所以要算整体的成功概率是他们的乘积
\(\frac{1}{2}*\frac{3}{4}*\frac{7}{8}*……*\frac{2^{n-1}-1}{2^{n-1}}\)
上面这个式子求极限是一个q series的问题,感兴趣的朋友可以去查一下怎么求解,这里直接给出概率,约等于0.28878
注意:
大家是不是以为这样子就万事大吉了?
No,这里还有一个需要注意的地方,可能很多朋友已经意识到了,量子态不是测量完就坍塌吗?为什么可以测量n-1次?
事实上,这是把第一部分给做了n-1次,这样你才可以有n-1个 \(|x\rangle\) 给你测量找出满足线性条件的x。
参考资料:
Quantume Mechanics & Quantume Computation Lecture 8
简单的量子算法(二):Simon's Algorithm的更多相关文章
- 简单的量子算法(一):Hadamard 变换、Parity Problem
Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- [转]EM算法(Expectation Maximization Algorithm)详解
https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...
- Floyd判圈算法 Floyd Cycle Detection Algorithm
2018-01-13 20:55:56 Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm) ...
- 如何简单解释 MapReduce算法
原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...
- 分布式共识算法 (二) Paxos算法
系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...
- 机器学习算法-K-NN的学习 /ML 算法 (K-NEAREST NEIGHBORS ALGORITHM TUTORIAL)
1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是 ...
- sklearn简单实现机器学习算法记录
sklearn简单实现机器学习算法记录 需要引入最重要的库:Scikit-learn 一.KNN算法 from sklearn import datasets from sklearn.model_s ...
- 史上最简单的排序算法?看起来却满是bug
大家好,我是雨乐. 今天在搜论文的时候,偶然发现一篇文章,名为<Is this the simplest (and most surprising) sorting algorithm ever ...
随机推荐
- 领域驱动设计(DDD)的实践经验分享之持久化透明
原文:领域驱动设计(DDD)的实践经验分享之持久化透明 前一篇文章中,我谈到了领域驱动设计中,关于ORM工具该如何使用的问题.谈了很多我心里的想法,大家也对我的观点做了一些回复,或多或少让我深深感觉到 ...
- js基础知识总结:函数
函数内部的属性: arguments 和this是函数内部的两个特殊对象 arguments: function recursion(num){ if(num<=1){ return 1; }e ...
- Zookeeper zkui-zookeeper图形化管理工具
zkui zkui是一个Zookeeper可视化管理工具. Github:https://github.com/DeemOpen/zkui zkui安装 1.Git拉取代码 #git clone ht ...
- Tomcat请求过程
Tomcat请求过程 1.用户点击网页内容,请求被发送到本机端口8080,被在那里监听的Coyote HTTP/1.1 Connector获得. 2.Connector把该请求交给它所在的Servic ...
- 如何解析DELPHI XE5服务器返回的JSON数据(翻译)及中文乱码
<span style="font-size:14px;">一直想找如何解析JSON数据的说,今天终于找到有人发帖子了.之前有人说用superobject,Tlkjso ...
- qt开发的小软件,可以递归转换文件编码(qt为了防止内存泄露所做的保护机制)
应用场景 当你下载别人的源码的时候,而别人的源码跟你自己电脑里面的编码不一致的情况下将会出现乱码,但是如果要一个个转换编码的话那么那样所需要花的时间太多,所以就有必要写一个软件递归遍历项目下面所有的文 ...
- 【linux杂谈】跟随大牛进行一次服务器间通讯问题的排查
发现应用记录日志内,出现网络访问延迟较大的情况. 此类问题较为常见,特别是之前参与辅助一个朋友项目运维的过程中,经常因为网络访问延迟较大,朋友认为是遭到了ddos攻击或者是cc攻击.网络访问延迟较大常 ...
- Centos7 fstab盘符挂载硬盘导致重启系统失败解决办法
服务器拥有多个硬盘插槽,在进行维护或重启时,这些硬盘的相对位置可能发生变化.利用盘符(dev/vda)方式挂载磁盘,可能由于磁盘顺序变化导致重启时读取fstab文件发生错误,从而无法正常重启服务器. ...
- kali 源文件 更改和使用 更新日期:2018.04.21
我的公众号,正在建设中,欢迎关注: 0x01 源文件格式: kali下常用的更新命令有: apt-get install update和apt-get install upgrade,update是下 ...
- CTF练习资源大全集
练习CTF清单/永久CTF清单 以下列出了一些长期运行的CTF实践站点和工具或CTF.谢谢,RSnake用于启动这是基于的原始版本.如果您有任何更正或建议,请随时通过dot com tld在域psif ...