前情回顾:

简单的量子算法(一):Hadamard 变换、Parity Problem

好的,现在开始正版的故事,Simon’s Algorithm

问题:

有一个secret string,是n位的0,1串 \(s \in \{0,1 \} ^n\)

现在有一个黑盒子,f(x),我们对他唯一的了解就是 \(f(x)=f(x \oplus s)\) ,输入的x也是n位的0,1串 \(x \in \{0,1 \} ^n\)

请问,要多少次,我们可以找到这个secret string?

经典解法:

如果我们能找到 \(x\) 和 \(x \oplus s\) ,那么非常容易,就可以得到s,只要 \(x\oplus x\oplus s\) 。

那么如果找到两个输入拥有相同的输出呢?

这个问题其实是另一个大家都很熟悉的问题的变形,一群人中,要多少人就有两个人的生日是相同的,印象中,23人两个人的生日是相同的概率就大于50%了,如果有60个人,那么两个人生日相同的概率就超过99%了。

这个问题和生日问题的解法是一样的,就不再累述了,想要知道的请搜索生日问题,在这里,我们给出一个大概的答案,是 \(2^{n/2}\) c次。

量子解法:

量子解法一共有三步:

  • set up random superposition $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$
  • Fourier Sample to get a random y: \(y·s=0 (\mod 2)\)
  • repeat step n-1 times to generate n-1 linear equation.

接下来,我们来一步一步的看每个步骤在做什么,以及怎么做:

第一步,制造叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$ ,这个可以通过图a实现。

首先通过第一个\(H ^{\otimes n}\) 门,我们n比特的 \(|0\rangle\) 就成功的变成了叠加态 $\frac{1}{2^{\frac{n}{2}}} \sum_x |x\rangle $

和 \(|b\rangle\) 一起通过 \(U_f\) ,得到的结果是 $\frac{1}{2^{\frac{n}{2}}} \sum_x |x\rangle|b\oplus f(x) \rangle $

测量 \(|b\oplus f(x) \rangle\) ,只有结果是测量结果的 \(|x\rangle\)还在,其他的 \(|x\rangle\) 都会坍缩,基于这个黑盒子的特性,那么只有 $|r\rangle $ 和 \(|r \oplus s \rangle\) 会留下来,因为他们的f(x)是一样的,r是任意的一个序列,测量的结果对应哪个r就是哪个r。

至此我们得到了想要的叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$

第二步,Fourier Sampling

对我们得到的叠加态 $ \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle$ Fourier Sampling

再次通过\(H ^{\otimes n}\) 我们能得到什么?

依照我们在简单的量子算法(一)中的结论,我们知道 \(H^{\otimes n} |u\rangle = \sum_x \frac{-1^{u·x}}{2^{\frac{n}{2}}} |x\rangle\) 。

那么

\[\begin{align} H^{\otimes n} ( \frac{1}{\sqrt2} |r\rangle +\frac{1}{\sqrt2} |r \oplus s \rangle) &= \frac{1}{\sqrt2}\sum_x \frac{-1^{r·x}}{2^{n/2}} |x\rangle+\frac{1}{\sqrt2}\sum_x \frac{-1^{(r\oplus s)·x}}{2^{n/2}} |x\rangle \\ &=\sum_x (\frac{-1^{r·x}}{2^{(n+1)/2}}+\frac{-1^{(r\oplus s)·x}}{2^{(n+1)/2}}) |x\rangle \\ &= \sum_x\frac{1^{r·x}+(-1)^{(r\oplus s)·x}}{2^{(n+1)/2}}|x\rangle \end{align}\]

此时,我们的问题已经集中在了 \(1^{r·x}+(-1)^{(r\oplus s)·x}\) 上。

\((-1)^{(r\oplus s)·x}\) 可以写成\((-1)^{s·x}*(-1)^{r·x}\) (至于为什么可以,大家可以试一下都是按位操作,一共也就4种可能

那么每种可能的概率的公式就可以写成\(\frac{((-1)^{s·x}+1)*(-1)^{r·x}}{2^{(n+1/2)}}\)

如果 \(s·x=0\) 那么,这个概率正好为 \(\frac{(-1)^{r·z}}{2^{(n-1)/2}}\)

如果 \(s·x=-1\) 那么,这个概率正好为0

那么这又说明了什么呢?

这个说明只要我们测量 \(|x\rangle\) ,那么我们得到的x一定是 \(s·x=0\) 的,因为不为0的都被抵消了。

那么得到了x,又意味着什么呢?

\(s·x=0\) 事实上我们是得到了一个等式 $s_1x_1+s_2x_2+……+s_nx_n =0 \mod 2 $

第三步:

如果我们把第一次测量得到的x编号为 \(x^1\) ,那么我们得到了等式 $s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $

第二次测量,得到等式 $s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $

以此类推,测量n-1次,得到了n-1个等式的方程式组。

$s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $

$s_1x_1^1+s_2x_2^1+……+s_nx_n^1 =0 \mod 2 $

……

$s_1x_1^{n-1}+s_2x_2^{n-1}+……+s_nx_n^{n-1} =0 \mod 2 $

n-1个等式,n个未知数( \(s_1,s_2,……,s_n\) ),一般来说会有两组解,一组是全零的平凡解,这个是我们不要的,而另一组解就是我们的答案 \(s\) 。

成功的概率:

上述的解方程有一个前提,那就是这是一个线性方程组,如果这个不是线性的,那么测量n-1次是不可能得答案的。

那么我测量得到的x组成的方程是线性方程的概率是多少呢?

我们可以列一个表格来看看:

失败的情况 失败的概率 成功的概率
\(x^1\) 0 \(\frac{1}{2^{n-1}}\) \(1-\frac{1}{2^{n-1}}\)
\(x^2\) 0、 \(x^1\) \(\frac{2}{2^{n-1}}\) \(1-\frac{1}{2^{n-2}}\)
\(x^3\) 0 、 \(x^1\) 、\(x^2\) 、\(x^1+x^2\) \(\frac{4}{2^{n-1}}\) \(1-\frac{1}{2^{n-3}}\)
…… …… ………… \(1-\frac{1}{2^{n-1}}\)
\(x^{n-1}\) 0 、 \(x^1\) ……\(x^1+x^2\)……\(x^1+x^2+……+x^n-2\) \(\frac{2^{n-2}}{2^{n-1}}\) \(1-\frac{1}{2}\)

每次的测量失败的情况分为以下三种情况:

  • 测量出来全是0
  • 测量出来结果和前面的是一样的
  • 测量出来的结果是前面测量结果的线性组合

因为这里算的成功概率都是独立的成功概率,所以要算整体的成功概率是他们的乘积

\(\frac{1}{2}*\frac{3}{4}*\frac{7}{8}*……*\frac{2^{n-1}-1}{2^{n-1}}\)

上面这个式子求极限是一个q series的问题,感兴趣的朋友可以去查一下怎么求解,这里直接给出概率,约等于0.28878

注意:

大家是不是以为这样子就万事大吉了?

No,这里还有一个需要注意的地方,可能很多朋友已经意识到了,量子态不是测量完就坍塌吗?为什么可以测量n-1次?

事实上,这是把第一部分给做了n-1次,这样你才可以有n-1个 \(|x\rangle\) 给你测量找出满足线性条件的x。

参考资料:

Quantume Mechanics & Quantume Computation Lecture 8

简单的量子算法(二):Simon's Algorithm的更多相关文章

  1. 简单的量子算法(一):Hadamard 变换、Parity Problem

    Hadamard Transform Hadamard 变换在量子逻辑门中提过,只不过那时是单量子的Hadamard门,负责把\(|1\rangle\)变成\(|-\rangle\),\(|0\ran ...

  2. 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)

    一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25  16:29:19   对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...

  3. [转]EM算法(Expectation Maximization Algorithm)详解

    https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...

  4. Floyd判圈算法 Floyd Cycle Detection Algorithm

    2018-01-13 20:55:56 Floyd判圈算法(Floyd Cycle Detection Algorithm),又称龟兔赛跑算法(Tortoise and Hare Algorithm) ...

  5. 如何简单解释 MapReduce算法

    原文地址:如何简单解释 MapReduce 算法 在Hackbright做导师期间,我被要求向技术背景有限的学生解释MapReduce算法,于是我想出了一个有趣的例子,用以阐释它是如何工作的. 例子 ...

  6. 分布式共识算法 (二) Paxos算法

    系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...

  7. 机器学习算法-K-NN的学习 /ML 算法 (K-NEAREST NEIGHBORS ALGORITHM TUTORIAL)

    1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是 ...

  8. sklearn简单实现机器学习算法记录

    sklearn简单实现机器学习算法记录 需要引入最重要的库:Scikit-learn 一.KNN算法 from sklearn import datasets from sklearn.model_s ...

  9. 史上最简单的排序算法?看起来却满是bug

    大家好,我是雨乐. 今天在搜论文的时候,偶然发现一篇文章,名为<Is this the simplest (and most surprising) sorting algorithm ever ...

随机推荐

  1. SQL语法详解

    ALTER DATABASE修改数据库全局特性 ALTER DATABASE实际上是修改数据库目录中的dp.opt文件 ALTER TABLE修改表的结构 ALTER TABLE对表进行增删列,创建取 ...

  2. 冒泡排序C#实现,使用委托,包括三种方式:Fun<>,匿名方法,Lambda表达式

    冒泡排序是一种简单的排序方法,适合于小量数字排序,对于大量数字(超过10个),还有更高效的排序方法. 这里的实现的冒泡排序,需实现功能: 不仅数字排序,还要对任意对象排序 示例: 对People对象的 ...

  3. strlen源码剖析(可查看glibc和VC的CRT源代码)

    学习高效编程的有效途径之一就是阅读高手写的源代码,CRT(C/C++ Runtime Library)作为底层的函数库,实现必然高效.恰好手中就有glibc和VC的CRT源代码,于是挑了一个相对简单的 ...

  4. Python正则表达式进阶-零宽断言

    1. 什么是零宽断言 有时候在使用正则表达式做匹配的时候,我们希望匹配一个字符串,这个字符串的前面或后面需要是特定的内容,但我们又不想要前面或后面的这个特定的内容,这时候就需要零宽断言的帮助了.所谓零 ...

  5. 介绍两种Timer定时器的使用

    第一种, 直接实例化Timer类,设置时间间隔,到达时间后执行想要执行的事件.代码示例: using System; using System.Collections.Generic; using S ...

  6. 常用Linux网络命令

    TCP状态统计: netstat -anp TCP各个状态的连接数:netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a] ...

  7. c++汉诺塔相关知识总结1

    困扰已久,难以攻克的汉诺塔总结来啦 Part One 汉诺塔到底是什么呢? 汉诺塔(Tower of Hanoi)源于印度传说中,大梵天创造世界时造了三根金钢石柱子,其中一根柱子自底向上叠着64片黄金 ...

  8. mpvue 试水的一天

    小程序经过了将近两年的锤炼,现在出现了许许多多的框架,来帮助我们进行快速开发,最近可能迷上了mpvue这个框架,所以就用公司的项目练练手. mpvue是用vue作为基础骨架的,所以他非常想vue,所以 ...

  9. SLAM方向公众号、知乎、博客上有哪些大V可以关注?

    一.公众号 泡泡机器人:泡泡机器人由一帮热爱探索并立志推广机器人同时定位与地图构建(SLAM)技术的极客创办而成,通过原创文章.公开课等方式分享SLAM领域的数学理论.编程实践和学术前沿. ​ 经典文 ...

  10. Oracle分组函数之ROLLUP用法

    rollup函数 本博客简单介绍一下oracle分组函数之rollup的用法,rollup函数常用于分组统计,也是属于oracle分析函数的一种 环境准备 create table dept as s ...