题意:

  给出连续的1-n个珠子的涂色方法 a[i](1<=i<=n), 问长度为n的珠链共有多少种涂色方案

分析:

  可以得到DP方程: DP[n] = ∑(i=1,n) (DP[n-i]*a[i]).

  该方程为卷积形式,故 CDQ + FFT

  

  CDQ: 将 [l,r] 二分, 先得到[l,mid]的答案,再更新[l,mid]对[mid+1,r]的贡献.

       对任意 DP[j](mid+1 <= j <= r), [l,mid] 对其贡献为 ∑(i=l,mid) (DP[i]*a[j - i]) , 即多项式 DP 与 a 相乘后次数为j项.

  FFT: 优化多项式相乘.

(1 和 l 看不清的也就这破博客园了,代码还是粘下来的好,= =)

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const double PI = * atan(1.0);
const int MAXN = ;
const int MOD = ;
struct Complex
{
double x, y;
Complex(double xx = 0.0, double yy = 0.0) : x(xx), y(yy) {}
Complex operator - (const Complex &b) const
{
return Complex(x - b.x, y - b.y);
}
Complex operator + (const Complex &b) const
{
return Complex(x + b.x, y + b.y);
}
Complex operator * (const Complex &b) const
{
return Complex(x*b.x - y*b.y, x*b.y + y*b.x);
}
};
void Change(Complex y[], int len)
{
int i, j, k;
for (i = , j = len/; i < len-; i++)
{
if (i < j) swap(y[i], y[j]);
k = len / ;
while (j >= k)
{
j -= k;
k /= ;
}
if (j < k) j += k;
}
}
void FFT(Complex y[], int len,int on)
{
Change(y, len);
for (int h = ; h <= len; h <<= )
{
Complex wn( cos(-on**PI/h), sin(-on**PI/h) );
for (int j = ; j < len; j +=h)
{
Complex w(, );
for (int k = j; k < j + h/; k++)
{
Complex u = y[k];
Complex t = w * y[k + h/];
y[k] = u + t;
y[k + h/] = u - t;
w = w * wn;
}
}
}
if (on == -)
for (int i = ; i < len; i++)
y[i].x /= len;
}
int t, n;
Complex x[MAXN], y[MAXN];
int a[MAXN/], dp[MAXN/];
void CDQ(int l, int r)
{
if (l == r) { dp[l] = (dp[l] + a[l]) % MOD; return; }
int mid = (l + r) >> ;
CDQ(l, mid);//处理前半段
int len = , len1 = mid - l + , len2 = r - l + ;
while(len < len2) len <<= ;
for (int i = ; i < len1; i++) x[i] = Complex(dp[i + l], );
for (int i = len1; i < len; i++) x[i] = Complex(, );
for (int i = ; i < len2; i++) y[i] = Complex(a[i], );
for (int i = len2; i < len; i++) y[i] = Complex(, );
FFT(x, len, );
FFT(y, len, );
for (int i = ; i < len; i++) x[i] = x[i] *y[i];
FFT(x, len, -);
for (int i = mid+; i <= r; i++)//更新贡献
{
dp[i] = (int)(dp[i] + x[i - l].x + 0.5) %MOD;
}
CDQ(mid + , r);//处理后半段
}
int main()
{
while(~scanf("%d",&n) && n)
{
for (int i = ; i <= n; i++)
{
scanf("%d",&a[i]);
a[i] %= MOD;
dp[i] = ;
}
CDQ(, n);
printf("%d\n", dp[n]);
}
}

HDU 5730 - Shell Necklace的更多相关文章

  1. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  2. HDU 5730 Shell Necklace(CDQ分治+FFT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...

  3. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  4. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

  5. HDU 5730 Shell Necklace cdq分治+FFT

    题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...

  6. hdu 5730 Shell Necklace fft+cdq分治

    题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会 ...

  7. #8 //HDU 5730 Shell Necklace(CDQ分治+FFT)

    Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转 ...

  8. HDU.5730.Shell Necklace(分治FFT)

    题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(31 ...

  9. hdu Shell Necklace 5730 分治FFT

    Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell neckl ...

随机推荐

  1. 优化:代码移动code motion

    代码移动code motion-一种常见的优化-这种优化是把(一种需要执行多次但计算结果不会改变)的计算移到前面-这种优化一般需要程序员自行移动代码,不能依靠编译器(编译器担心会有副作用) 看看代码就 ...

  2. Python学习笔记6(列表生成式)

    1.生成列表 要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],我们可以用range(1, 11): >>> range(1, 11) [1, 2, 3 ...

  3. 反引号backtick中输入多个命令

    如果在反引号backtick中输入多个命令会怎样?比如有如下脚本: #!/bin/bash var=`date;who` echo $var 运行该脚本,会发现输出的是命令date和who的集合,只是 ...

  4. 提高MySQL数据库查询效率的几个技巧(转载)

    [size=5][color=Red]提高MySQL数据库查询效率的几个技巧(转)[/color][/size]      MySQL由于它本身的小巧和操作的高效, 在数据库应用中越来越多的被采用.我 ...

  5. C语言数组的学习

    什么是数组? 在程序设计中,为了处理方便,把具有相同类型的若干变量按有序的形式组织起来.这些按序排列的同类数据元素的集合称为数组. 在C语言中,数组属于构造数据类型.一个数组可以分解为多个数组元素,这 ...

  6. USB系列之七:ASPI介绍及命令测试

    在以前的一篇博文<关于构建DOS下编程平台的总结>中曾经介绍了一种在DOS下驱动U盘的方法,我们大致回顾一下.在config.sys中加入两个驱动程序,就可以驱动U盘:device = a ...

  7. 主要协议SCSI、FC、iSCSI

    一.SCSI SCSI是小型计算机系统接口(Small Computer System Interface)的简称,于1979首次提出,是为小型机研制的一种接口技术,现在已完全普及到了小型机,高低端服 ...

  8. Common Lisp 编译器IDE环境搭建

    搭建Common Lisp编程环境的方法有很多种,这里我使用的是最常见的一种:SBCL + Emacs + SLIME. SBCL是Steel Bank Common Lisp的简称,它是Common ...

  9. WebStorm JavaScript 开发神器

    WebStorm 百度百科 http://baike.baidu.com/view/5443872.htm?fr=aladdin

  10. PHP MySQL 创建数据库和表 之 Create

    创建数据库 CREATE DATABASE 语句用于在 MySQL 中创建数据库. 语法 CREATE DATABASE database_name 为了让 PHP 执行上面的语句,我们必须使用 my ...