S-Nim

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3077    Accepted Submission(s): 1361

Problem Description
Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.

The players take turns chosing a heap and removing a positive number of beads from it.

The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they recently learned an easy way to always be able to find the best move:

Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

If the xor-sum is 0, too bad, you will lose.

Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

The player that takes the last bead wins.

After the winning player's last move the xor-sum will be 0.

The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.

Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S =(2, 5) each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.

 
Input
Input consists of a number of test cases. For each test case: The first line contains a number k (0 < k ≤ 100 describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps. The last test case is followed by a 0 on a line of its own.
 
Output
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'. Print a newline after each test case.

 
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
 
Sample Output
LWW
WWL
 
Source
 
Recommend
LL
 
题意:
首先输入K 表示一个集合的大小  之后输入集合 表示对于这对石子只能去这个集合中的元素的个数
之后输入 一个m 表示接下来对于这个集合要进行m次询问 
之后m行 每行输入一个n 表示有n个堆  每堆有n1个石子  问这一行所表示的状态是赢还是输 如果赢输入W否则L
 
思路:
对于n堆石子 可以分成n个游戏 之后把n个游戏合起来就好了
 
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
//注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1边
//不需要每求一个数的SG就初始化一边
int SG[10100],n,m,s[102],k;//k是集合s的大小 S[i]是定义的特殊取法规则的数组
int dfs(int x)//求SG[x]模板
{
if(SG[x]!=-1) return SG[x];
bool vis[110];
memset(vis,0,sizeof(vis)); for(int i=0;i<k;i++)
{
if(x>=s[i])
{
dfs(x-s[i]);
vis[SG[x-s[i]]]=1;
}
}
int e;
for(int i=0;;i++)
if(!vis[i])
{
e=i;
break;
}
return SG[x]=e;
}
int main()
{
int cas,i;
while(scanf("%d",&k)!=EOF)
{
if(!k) break;
memset(SG,-1,sizeof(SG));
for(i=0;i<k;i++) scanf("%d",&s[i]);
sort(s,s+k);
scanf("%d",&cas);
while(cas--)
{
int t,sum=0;
scanf("%d",&t);
while(t--)
{
int num;
scanf("%d",&num);
sum^=dfs(num);
// printf("SG[%d]=%d\n",num,SG[num]);
}
if(sum==0) printf("L");
else printf("W");
}
printf("\n");
}
return 0;
}

 
 下面是对SG打表的做法
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int K=101;
const int H=10001;//H是我们要打表打到的最大值
int k,m,l,h,s[K],sg[H],mex[K];///k是集合元素的个数 s[]是集合 mex大小大约和集合大小差不多
///注意s的排序
void sprague_grundy()
{
int i,j;
sg[0]=0;
for (i=1;i<H;i++){
memset(mex,0,sizeof(mex));
j=1;
while (j<=k && i>=s[j]){
mex[sg[i-s[j]]]=1;
j++;
}
j=0;
while (mex[j]) j++;
sg[i]=j;
}
} int main(){
int tmp,i,j; scanf("%d",&k);
while (k!=0){
for (i=1;i<=k;i++)
scanf("%d",&s[i]);
sort(s+1,s+k+1); //这个不能少
sprague_grundy();
scanf("%d",&m);
for (i=0;i<m;i++){
scanf("%d",&l);
tmp=0;
for (j=0;j<l;j++){
scanf("%d",&h);
tmp=tmp^sg[h];
}
if (tmp)
putchar('W');
else
putchar('L');
}
putchar('\n');
scanf("%d",&k);
}
return 0;}

hdu 1536 SG函数模板题的更多相关文章

  1. HDU 1536 sg函数

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  2. UVA 10820 欧拉函数模板题

    这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...

  3. (hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)

    题目: The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...

  4. HDU 1847-Good Luck in CET-4 Everybody!-博弈SG函数模板

    Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载 ...

  5. hdu1536&&hdu3023 SG函数模板及其运用

    S-Nim Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. SG函数模板(转)

    ps:sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.me ...

  7. HDU 2222 AC自动机模板题

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=2222 AC自动机模板题 我现在对AC自动机的理解还一般,就贴一下我参考学习的两篇博客的链接: http: ...

  8. HDU 1251 Trie树模板题

    1.HDU 1251 统计难题  Trie树模板题,或者map 2.总结:用C++过了,G++就爆内存.. 题意:查找给定前缀的单词数量. #include<iostream> #incl ...

  9. HDU 3065 (AC自动机模板题)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3065 题目大意:多个模式串,范围是大写字母.匹配串的字符范围是(0~127).问匹配串中含有哪几种模 ...

随机推荐

  1. emoji表情键盘 回退删除方法

  2. jquery删除动态增加的li

    <script type="text/jscript"> //楼主帮你修改调整了下 $(document).ready(function () { $('.zuo li ...

  3. CMAKE的使用

    CMAKE的使用 Version 1.0 2009-3-18 一.      基本使用 安装:下载二进制包后可直接解压使用 从源码安装则执行命令:./bootstrap; make; make ins ...

  4. jQuery动态添加删除select项

    // 添加 function col_add() { var selObj = $("#mySelect"); var value="value"; var t ...

  5. [转]linux下iftop工具的安装与使用详解(图文)——实时的网络流量,监控TCP/IP连接(单机)

    原文链接:http://www.jbxue.com/LINUXjishu/10735.html 在linux中监控系统资源.进程.内存占用等信息,可以使用top命令.查看网络状态可以使用netstat ...

  6. Python之路day4

    坚持就是胜利.今天零下14度,从教室出来的路上真的很冷很冷,希望这个冬天自己不会白过,春暖花开的时候一定要给世界一个更好的自己. 原本以为day3的作业自己做得挺好的,没想到只得了B+.必须要加油了, ...

  7. the Meta-Object Compiler (moc)

    the Meta-Object Compiler (moc) 元对象编译器是处理Qt的C++扩展的程序. moc工具读取C++头文件,如果它找到一个或者多个类声明包含Q_OBJECT宏.它生为那些类成 ...

  8. 海量数据存储之Key-Value存储简介

    Key-value存储简介 具备高可靠性及可扩展性的海量数据存储对互联网公司来说是一个巨大的挑战,传统的数据库往往很难满足该需求,并且很多时候对于特定的系统绝大部分的检索都是基于主键的的查询,在这种情 ...

  9. Android imageView图片按比例缩放

    android:scaleType可控制图片的缩放方式,示例代码如下: <ImageView android:id="@+id/img" android:src=" ...

  10. Hadoop源代码导入Eclipse

    须要进一步学习hadoop.须要看看内部源代码实现.因此须要将hadoop源代码导入都eclipse中,简单总结一下,详细过程例如以下: 首先确保已经安装了git.maven3.protobuf2.5 ...