VC获取精确时间的做法
声明:本文章是我整合网上的资料而成的,其中的大部分文字不是我所为的,我所起的作用只是归纳整理并添加我的一些看法。非常感谢引用到的文字的作者的辛勤劳动,所参考的文献在文章最后我已一一列出。
对关注性能的程序开发人员而言,一个好的计时部件既是益友,也是良师。计时器既可以作为程序组件帮助程序员精确的控制程序进程,又是一件有力的调试武器,在有经验的程序员手里可以尽快的确定程序的性能瓶颈,或者对不同的算法作出有说服力的性能比较。
在Windows平台下,常用的计时器有两种,一种是timeGetTime多媒体计时器,它可以提供毫秒级的计时。但这个精度对很多应用场合而言还是太粗糙了。另一种是QueryPerformanceCount计数器,随系统的不同可以提供微秒级的计数。对于实时图形处理、多媒体数据流处理、或者实时系统构造的程序员,善用QueryPerformanceCount/QueryPerformanceFrequency是一项基本功。
本文要介绍的,是另一种直接利用Pentium CPU内部时间戳进行计时的高精度计时手段。以下讨论主要得益于《Windows图形编程》一书,第 15页-17页,有兴趣的读者可以直接参考该书。关于RDTSC指令的详细讨论,可以参考Intel产品手册。本文仅仅作抛砖之用。
在 Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述两种方法所无法比拟的。
在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用。像这样:
inline unsigned __int64 GetCycleCount()
{
__asm RDTSC
}
但是不行,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31,如下:
inline unsigned __int64 GetCycleCount()
{
__asm _emit 0x0F
__asm _emit 0x31
}
以后在需要计数器的场合,可以像使用普通的Win32 API一样,调用两次GetCycleCount函数,比较两个返回值的差,像这样:
unsigned long t;
t = (unsigned long)GetCycleCount();
//Do Something time-intensive ...
t -= (unsigned long)GetCycleCount();
《Windows图形编程》第15页编写了一个类,把这个计数器封装起来。有兴趣的读者可以去参考那个类的代码。作者为了更精确的定时,做了一点小小的改进,把执行RDTSC指令的时间,通过连续两次调用GetCycleCount函数计算出来并保存了起来,以后每次计时结束后,都从实际得到的计数中减掉这一小段时间,以得到更准确的计时数字。但我个人觉得这一点点改进意义不大。在我的机器上实测,这条指令大概花掉了几十到100多个周期,在 Celeron 800MHz的机器上,这不过是十分之一微秒的时间。对大多数应用来说,这点时间完全可以忽略不计;而对那些确实要精确到纳秒数量级的应用来说,这个补偿也过于粗糙了。
我从《Windows图形编程》上把这个类的源码拷贝了下来供大家看看,下面是使用RDTSC指令的CPU时钟循环秒表类:
- // Timer.h
- #pragma once
- inline unsigned __int64 GetCycleCount(void)
- {
- _asm _emit 0x0F
- _asm _emit 0x31
- }
- class KTimer
- {
- unsigned __int64 m_startcycle;
- public:
- unsigned __int64 m_overhead;
- KTimer(void)
- {
- m_overhead = 0;
- Start();
- m_overhead = Stop();
- }
- void Start(void)
- {
- m_startcycle = GetCycleCount();
- }
- unsigned __int64 Stop(void)
- {
- return GetCycleCount()-m_startcycle-m_overhead;
- }
- };
这个方法的优点是:
1.高精度。可以直接达到纳秒级的计时精度(在1GHz的CPU上每个时钟周期就是一纳秒),这是其他计时方法所难以企及的。
2. 成本低。timeGetTime 函数需要链接多媒体库winmm.lib,QueryPerformance* 函数根据MSDN的说明,需要硬件的支持(虽然我还没有见过不支持的机器)和KERNEL库的支持,所以二者都只能在Windows平台下使用(关于DOS平台下的高精度计时问题,可以参考《图形程序开发人员指南》,里面有关于控制定时器8253的详细说明)。但RDTSC指令是一条CPU指令,凡是i386平台下Pentium以上的机器均支持,甚至没有平台的限制(我相信i386版本UNIX和Linux下这个方法同样适用,但没有条件试验),而且函数调用的开销是最小的。
(这里我想说的是:照这样看,跨平台也只能说是操作系统平台,不能跨硬件平台,就是说只能用在Intel Pentium以上的机器)
3. 具有和CPU主频直接对应的速率关系。一个计数相当于1/(CPU主频Hz数)秒,这样只要知道了CPU的主频,可以直接计算出时间。这和 QueryPerformanceCount不同,后者需要通过QueryPerformanceFrequency获取当前计数器每秒的计数次数才能换算成时间。
这个方法的缺点是:
1.现有的C/C++编译器多数不直接支持使用RDTSC指令,需要用直接嵌入机器码的方式编程,比较麻烦。
2.数据抖动比较厉害。其实对任何计量手段而言,精度和稳定性永远是一对矛盾。如果用低精度的timeGetTime来计时,基本上每次计时的结果都是相同的;而RDTSC指令每次结果都不一样,经常有几百甚至上千的差距。这是这种方法高精度本身固有的矛盾。
(这里数据抖动确实是一个大问题,我遇到过这样一种情况,比如测试a和b两种算法,由于数据抖动,有时a比b耗时少,有时b比a耗时少。我想过两种测试办法:
(1)增多测试次数,比如对a和b两种算法各测试10次,看a比b耗时少的次数和b比a耗时少的次数哪个多,以此判定哪个算法效率高。
(2)增大测试数据量,我想一增大测试数据量,算法效率的差异就会显现出来)
关于这个方法计时的最大长度,我们可以简单的用下列公式计算:
自CPU上电以来的秒数 = RDTSC读出的周期数 / CPU主频速率(Hz)
64位无符号整数所能表达的最大数字是1.8×10^19,在我的Celeron 800上可以计时大约700年(书中说可以在200MHz的Pentium上计时117年,这个数字不知道是怎么得出来的,与我的计算有出入)。无论如何,我们大可不必关心溢出的问题。
下面是几个小例子,简要比较了三种计时方法的用法与精度
- #include <stdio.h>
- #include "KTimer.h"
- main()
- {
- unsigned t;
- KTimer timer;
- timer.Start();
- Sleep(1000);
- t = timer.Stop();
- printf("Lasting Time: %d/n",t);
- }
- //Timer2.cpp 使用了timeGetTime函数
- //需包含<mmsys.h>,但由于Windows头文件错综复杂的关系
- //简单包含<windows.h>比较偷懒:)
- //编译行:CL timer2.cpp /link winmm.lib
- #include <windows.h>
- #include <stdio.h>
- main()
- {
- DWORD t1, t2;
- t1 = timeGetTime();
- Sleep(1000);
- t2 = timeGetTime();
- printf("Begin Time: %u/n", t1);
- printf("End Time: %u/n", t2);
- printf("Lasting Time: %u/n",(t2-t1));
- }
- //Timer3.cpp 使用了QueryPerformanceCounter函数
- //编译行:CL timer3.cpp /link KERNEl32.lib
- #include <windows.h>
- #include <stdio.h>
- main()
- {
- LARGE_INTEGER t1, t2, tc;
- QueryPerformanceFrequency(&tc);
- printf("Frequency: %u/n", tc.QuadPart);
- QueryPerformanceCounter(&t1);
- Sleep(1000);
- QueryPerformanceCounter(&t2);
- printf("Begin Time: %u/n", t1.QuadPart);
- printf("End Time: %u/n", t2.QuadPart);
- printf("Lasting Time: %u/n",( t2.QuadPart- t1.QuadPart));
- // 这里要计算时间(单位为秒),应加上这一句
- double dTotalTime = (double)(t2.QuadPart-t1.QuadPart) / (double)tc.QuadPart; //秒
- printf("耗时: %f/n", dTotalTime);
- }
//以上三个示例程序都是测试1秒钟休眠所耗费的时间
file://测/试环境:Celeron 800MHz / 256M SDRAM
// Windows 2000 Professional SP2
// Microsoft Visual C++ 6.0 SP5
////////////////////////////////////////////////
以下是Timer1的运行结果,使用的是高精度的RDTSC指令
Lasting Time: 804586872
以下是Timer2的运行结果,使用的是最粗糙的timeGetTime API
Begin Time: 20254254
End Time: 20255255
Lasting Time: 1001
以下是Timer3的运行结果,使用的是QueryPerformanceCount API
Frequency: 3579545
Begin Time: 3804729124
End Time: 3808298836
Lasting Time: 3569712
古人说,触类旁通。从一本介绍图形编程的书上得到一个如此有用的实时处理知识,我感到非常高兴。有美不敢自专,希望大家和我一样喜欢这个轻便有效的计时器。
网上有一种说法说
double dTotalTime=(double)(t2.QuadPart-t1.QuadPart)/(double)tc.QuadPart
可能有问题,比如说现在很多主板都有CPU频率自动调整功能,主要是节能,尤其在笔记本上,这样除下来不能保证精确性。我不确定这种说法是否准确,供大家研究
上文主要摘自《使用CPU时间戳进行高精度计时》,其实除了上面提到的三种方法,还有一种常用当然没有上面准确的办法,就是使用GetTickCount函数,这种方法能够获取毫秒级的时间,具体用法如下:
- DWORD startTime = GetTickCount();
- // do something
- DWORD totalTime = GetTickCount() - startTime;
参考文献:
《使用CPU时间戳进行高精度计时》 作者:zhangyan_qd
《Windows图形编程》,(美)Feng Yuan 著
《VC中取得毫秒级的时间》,http://www.cppblog.com/humanchao/archive/2008/04/22/43322.html
VC获取精确时间的做法的更多相关文章
- vc 获取当前时间 (zhuan)
vc 获取当前时间(2010-02-10 11:34:32) http://wenku.baidu.com/view/6ade96d049649b6648d7475e.html 1.使用CTime类 ...
- VC++ 获取系统时间、程序运行时间(精确到秒,毫秒)的五种方法
1.使用CTime类(获取系统当前时间,精确到秒) CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime();//获取系统日期 str=tm ...
- 【VS开发】VC++ 获取系统时间、程序运行时间(精确到秒,毫秒)的五种方法
1.使用CTime类(获取系统当前时间,精确到秒) CString str; //获取系统时间 CTime tm; tm=CTime::GetCurrentTime();//获取系统日期 str=tm ...
- linux 下的clock_gettime() 获取精确时间函数
#include <time.h> int clock_gettime(clockid_t clk_id, struct timespec* tp); clock_gettime() 函数 ...
- 浅析libuv源码-获取精确时间
在Timer模块中有提到,libuv控制着延迟事件的触发,那么必须想办法精确控制时间. 如果是JS,获取当前时间可以直接通过Date.now()得到一个时间戳,然后将两段时间戳相减得到时间差.一般情况 ...
- vc 获取当前时间
1.使用CTime类 CString str; //获取系统时间 CTime tm; tm=CTime:: GetCurrentTime_r(); str=tm.Format("现在时间是% ...
- vc 获取网络时间
方式1 : #include <WinSock2.h> #include <Windows.h> #pragma comment(lib, "WS2_32" ...
- Android平台之不预览获取照相机预览数据帧及精确时间截
在android平台上要获取预览数据帧是一件极其容易的事儿,但要获取每帧数据对应的时间截并不那么容易,网络上关于这方面的资料也比较少.之所以要获取时间截,是因为某些情况下需要加入精确时间轴才能解决问题 ...
- PHP——获取当前时间精确到毫秒(yyyyMMddHHmmssSSS)
前言 emmmmmm,别说话,我们偷偷偷狗子 格式 | yyyyMMddHHmmssSSS 代码 获取毫秒 //获取当前时间毫秒 function msectime() { list($msec, $ ...
随机推荐
- Android UI高级交互设计Demo
首先:是google的新标准 Google Material design 开源项目 1.直接拿来用!十大Material Design开源项目 2.收集android上开源的酷炫的交互动画和视觉效果 ...
- Ubuntu常用命令整理
最近开始用Ubuntu系统了,各种命令很不熟练,想收集一下,以便以后查阅,用这个时常更新的随笔 1.Ubuntu设置与修改用户密码 设置ROOT密码方法:sudo passwd root ,然后输入密 ...
- C++中operator关键字(重载操作符)
operator是C++的关键字,它和运算符一起使用,表示一个运算符函数,理解时应将operator=整体上视为一个函数名. 这是C++扩展运算符功能的方法,虽然样子古怪,但也可以理解:一方面要使运算 ...
- json中头疼的null
在服务器返回 json 数据的时候,时常会出现如下数据 "somevalue":null 这个时候,json 解析的时候,就会吧这个 null 解析成 NSNull 的对象,我们向 ...
- 微信支付java版V3验证数据合法性
[TOC] 1. 微信支付java版V3验证数据合法性 概要:使用微信支付接口时,微信会返回或回调给商户XML数据,开发者需要验证微信返回的数据是否合法. 特别提醒:商户系统对于支付结果通知的内容一定 ...
- cocostudio导出plist文件
今天在用Armature类时用到cocostudio导出文件,由于美术的原因他使用的是中文命名法(这你敢相信),后面在导入程序中跟了下代码发现是解析plist文件有误,我就来比较正常功能文件和有错文件 ...
- C++学习之this指针
C++学习之this指针 一个对象的this指针并不是对象本身的一部分,不会影响sizeof(对象)的结果.this作用域是在类内部,当在类的非静态成员函数中访问类的非静态成员的时候,编译器会自动将对 ...
- php基础知识笔记
基本语法 php文件的后缀名可以是 .php .php3 .phtml 输出命令 echo , print 语句以;结束 注释 // /* */ 变量都带$前缀, 如: $x, $names, $th ...
- Qt限制文本框输入的方法(使用QRegExpValidator,为QLineEdit所独有)
在做界面编程的时候,对文本框的处理往往是个很头疼的事情,一是焦点进入文本框时,从人性化考虑,应选择文本框中文本,方便输入:二是,限制文本框的输入,只允许输入有效的文本,如果不这样做的话,那么就需要在程 ...
- Delphi2010的RTTI增强
Delphi编译的文件体积增大了很多.很大一部分原因是因为Delphi2010默认提供了全信息的RTTI. 每一个数据类型都有全部运行时信息.例如可以在运行时获得结构体的成员以及成员类型等. 这个功能 ...