转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove

上场CF的C题是一个树的分治。。。

今天刚好又看到一题,就做了下

题意:一棵树,问两个点的距离<=k的点对数目。

http://poj.org/problem?id=1987

貌似是经典的点分治题。。。。。

看成有根树,那么这样的点对路径分为两种,1、过根节点,2、存在于某一棵子树当中。

显然情况2可以看成是一种子情况

对于1的统计,统计所有节点到根节点的距离,枚举+二分可以得到有多少个二元组的和<=k。

但是需要除掉两个点都在某一棵子树中的情况,所以枚举所有子树,同样是枚举+二分。

至于根的选择,选取树的重心。。。我是两次DFS,类似数形DP,求出所有子树的size,找到某一个结点,若删除这个结点,剩下的子树的size中最大的最小。

总体复杂度大概是nlgnlgn

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int N = 40005;
struct Edge{
int v,next,w;
}e[N<<1];
int tot,start[N],n,m,k,del[N],ans=0;
int size[N];
void _add(int u,int v,int w){
e[tot].v=v;e[tot].w=w;
e[tot].next=start[u];start[u]=tot++;
}
void add(int u,int v,int w){
_add(u,v,w);
_add(v,u,w);
}
void cal(int u,int pre){
size[u]=1;
for(int i=start[u];i!=-1;i=e[i].next){
int v=e[i].v;
if(v==pre||del[v]) continue;
cal(v,u);
size[u]+=size[v];
}
}
int newroot,maxsize,totalsize;
void dfs(int u,int pre){
int mx=0,sum=1;
for(int i=start[u];i!=-1;i=e[i].next){
int v=e[i].v;
if(v==pre||del[v]) continue;
dfs(v,u);
mx=max(mx,size[v]);
sum+=size[v];
}
mx=max(mx,totalsize-sum);
if(mx<maxsize){
maxsize=mx;
newroot=u;
}
}
int search(int r){
newroot=-1;maxsize=1<<30;
cal(r,-1);
totalsize=size[r];
dfs(r,-1);
return newroot;
}
int dist[N],idx;
vector<int>sub[N],all;
void gao(int u,int pre){
all.push_back(dist[u]);
sub[idx].push_back(dist[u]);
for(int i=start[u];i!=-1;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(v==pre||del[v]) continue;
dist[v]=dist[u]+w;
gao(v,u);
}
}
void solve(int root){
root=search(root);
del[root]=1;
if(totalsize==1) return ;
idx=0;all.clear();
for(int i=start[root];i!=-1;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(del[v]) continue;
sub[idx].clear();
dist[v]=w;
gao(v,-1);
sort(sub[idx].begin(),sub[idx].end());
idx++;
}
for(int i=0;i<idx;i++){
int pos;
for(int j=0;j<sub[i].size();j++){
pos=upper_bound(sub[i].begin(),sub[i].end(),k-sub[i][j])-sub[i].begin()-1;
if(pos>j) ans-=pos-j;
}
pos=upper_bound(sub[i].begin(),sub[i].end(),k)-sub[i].begin()-1;
if(pos>=0) ans+=pos+1;
}
sort(all.begin(),all.end());
for(int i=0;i<all.size();i++){
int pos=upper_bound(all.begin(),all.end(),k-all[i])-all.begin()-1;
if(pos>i) ans+=pos-i;
}
for(int i=start[root];i!=-1;i=e[i].next){
int v=e[i].v;
if(del[v]) continue;
solve(v);
}
}
int main(){
tot=0;memset(start,-1,sizeof(start));
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
int u,v,w;char str[5];
scanf("%d%d%d%s",&u,&v,&w,str);
add(u,v,w);
}
scanf("%d",&k);
solve(1);
printf("%d\n",ans);
return 0;
}

POJ 1987 Distance Statistics(树的点分治)的更多相关文章

  1. POJ 1987 Distance Statistics 树分治

    Distance Statistics     Description Frustrated at the number of distance queries required to find a ...

  2. POJ 1987 Distance Statistics

    http://poj.org/problem?id=1987 题意:给一棵树,求树上有多少对节点满足距离<=K 思路:点分治,我们考虑把每个距离都存起来,然后排序,一遍扫描计算一下,注意还要减掉 ...

  3. poj 1741 Tree(树的点分治)

    poj 1741 Tree(树的点分治) 给出一个n个结点的树和一个整数k,问有多少个距离不超过k的点对. 首先对于一个树中的点对,要么经过根结点,要么不经过.所以我们可以把经过根节点的符合点对统计出 ...

  4. POJ 1987 BZOJ 3365 Distance Statistics 树的分治(点分治)

    题目大意:(同poj1741,刷一赠一系列) CODE: #include <cstdio> #include <cstring> #include <iostream& ...

  5. 【POJ 1741】 Tree (树的点分治)

    Tree   Description Give a tree with n vertices,each edge has a length(positive integer less than 100 ...

  6. POJ 1741 Tree (树的点分治入门)

      Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16172   Accepted: 5272 Descripti ...

  7. POJ 2255 Tree Recovery 树的遍历,分治 难度:0

    http://poj.org/problem?id=2255 #include<cstdio> #include <cstring> using namespace std; ...

  8. POJ 1741/1987 树的点分治

    树的点分治,主要思想是每次找子树的重心,计算经过根节点的情况数,再减去点对属于同一子树的情况. #include <iostream> #include <vector> #i ...

  9. poj 1741 树的点分治(入门)

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18205   Accepted: 5951 Description ...

随机推荐

  1. HtmlHelper扩展 及 页面编码化

    Html.Encode 新建Action,命名为HtmlEncodeDemo 将含有特殊字符的值传递给View视图 <%= ViewData["script"] %> ...

  2. MVC 简单数据传递

    Mode: namespace MVCDemo.Models { public class Data { //申明为静态 归类所有,取数据不要实例化 ; public static string st ...

  3. fcitx-rime添加五笔/五笔拼音

    简介 Rime,全名:中州韵输入法引擎,它不仅仅是一个输入法,也是一个输入法算法框架.Rime 支持拼音.双拼.注音.五笔和仓颉等音码.形码输入法. 安装 Debian sid 用户可以使用下面命令安 ...

  4. Hash表的扩容(转载)

    Hash表(Hash Table)   hash表实际上由size个的桶组成一个桶数组table[0...size-1] . 当一个对象经过哈希之后.得到一个对应的value , 于是我们把这个对象放 ...

  5. 数据结构c++语言描述——最大堆(MaxHeap)

    一.最大堆的插入 图9-3a 给出了一个具有5个元素的最大堆.由于堆是完全二叉树,当加入一个元素形成6元素堆时,其结构必如9-3b 所示.如果插入元素的值为1,则插入后该元素成为2的左孩子,相反,若新 ...

  6. java合并list

    import java.util.ArrayList; import java.util.List;   import com.google.common.collect.Lists;   priva ...

  7. 设置改变oracle字符集

      修改过密码之后就能以dba的身份进行修改了,不是dba的话在执行修改命令的时候会提示你权限不足. 开始-->运行-->cmd,之后输入:"sqlplus sys/oracle ...

  8. 自定义UIView动画效果

    最普通动画: //开始动画 [UIView beginAnimations:nil context:nil]; //设定动画持续时间 [UIView setAnimationDuration:]; / ...

  9. SAR ADC : 逐次逼近寄存器型(SAR)模数转换器(ADC)

    1.为实现二进制搜索算法,N位寄存器首先设置在中间刻度(即:100... .00,MSB设置为1).这样,DAC输出(VDAC)被设为VREF/2,VREF是提供给ADC的基准电压.然后,比较判断VI ...

  10. [Leetcode] Two Sum (C++)

    我在Github上新建了一个解答Leetcode问题的Project, 大家可以参考, 目前是Java 为主,里面有leetcode上的题目,解答,还有一些基本的单元测试,方便大家起步. 题目: Gi ...