Dance Dance Revolution

Time limit: 3.000 seconds

Mr. White, a fat man, now is crazy about a game named ``Dance, Dance, Revolution". But his dance skill is
so poor that he could not dance a dance, even if he dances arduously every time. Does ``DDR" just mean him
a perfect method to squander his pounds? No way. He still expects that he will be regarded as ``Terpsichorean
White" one day. So he is considering writing a program to plan the movement sequence of his feet, so that he
may save his strength on dancing. Now he looks forward to dancing easily instead of sweatily.
``DDR" is a dancing game that requires the dancer to use his feet to tread on the points according to the
direction sequence in the game. There are one central point and four side points in the game. Those side points
are classified as top, left, bottom and right. For the sake of explanation, we mark them integers. That is, the
central point is 0, the top is 1, the left is 2, the bottom is 3, and the right is 4, as the figure below shows:

At the beginning the dancer's two feet stay on the central point. According to the direction sequence, the
dancer has to move one of his feet to the special points. For example, if the sequence requires him to move to
the top point at first, he may move either of his feet from point 0 to point 1 (Note: Not both of his feet). Also,
if the sequence then requires him to move to the bottom point, he may move either of his feet to point 3,
regardless whether to use the foot that stays on point 0 or the one that stays on point 1.
There is a strange rule in the game: moving both of his feet to the same point is not allowed. For instance, if
the sequence requires the dancer to the bottom point and one of his feet already sta ys on point 3, he should
stay the very foot on the same point and tread again, instead of moving the other one to point 3.
After dancing for a long time, Mr. White can calculate how much strength will be consumed when he moves
from one point to another. Moving one of his feet from the central point to any side points will consume 2
units of his strength. Moving from one side point to another adjacent side point will consume 3 units, such as
from the top point to the left point. Moving from one side point to the opposite side point will consume 4
units, such as from the top point to the bottom point. Yet, if he stays on the same point and tread again, he will
use 1 unit.
Assume that the sequence requires Mr. White to move to point 1 2 2 4. His feet may stays on
(point 0, point 0) (0, 1) (2, 1) (2, 1) (2, 4). In this couple of integers, the former number
represents the point of his left foot, and the latter represents the point of his right foot. In this way, he has to
consume 8 units of his strength. If he tries another pas, he will have to consume much more strength. The 8
units of strength is the least cost.

Input
The input file will consist of a series of direction sequences. Each direction sequence contains a sequence of
numbers. Ea ch number should either be 1, 2, 3, or 4, and each represents one of the four directions. A value
of 0 in the direction sequence indicates the end of direction sequence. And this value should be excluded from
the direction sequence. The input file ends if the sequence contains a single 0.
Output
For each direction sequence, print the least units of strength will be consumed. The result should be a single
integer on a line by itself. Any more white spaces or blank lines are not allowable.
Sample Input
1 2 2 4 0
1 2 3 4 1 2 3 3 4 2 0
0
Sample Output
8
22
Shanghai 2000-2001

题解:

线性动态规划。维护一个三维数组f[i][x][y]表示在第i步左脚在x,右脚在y消耗最小的体力。

注意初始化f=MAX_NUMBER。f[1][a[1]][0]=2;f[1][0][a[1]]=2;

动态转移方程:

f[i][a[i]][j]=min(f[i][a[i]][j],f[i-1][k][j]+effort(k,a[i]));

f[i][j][a[i]]=min(f[i][j][a[i]],f[i-1][j][k]+effort(k,a[i]));

代码:

 #include<stdio.h>
#include<string.h>
#include<stdbool.h>
int i,j,n,
a[],f[][][]; int
pre()
{
memset(a,,sizeof(a));
memset(f,,sizeof(f));
return ;
} int
init()
{
while(true)
{
n++;
scanf("%d",&a[n]);
if(a[n]==)
{
n--;
break;
}
} f[][a[]][]=;
f[][][a[]]=;
return ;
} int
max(int a,int b)
{
if(a>b) return(a);
else return(b);
} int
min(int a,int b)
{
if(a<b) return(a);
else return(b);
}
int
effort(int a,int b)
{
int p;
if((min(a,b)==)&&(max(a,b)!=)) return();
p=max(a,b)-min(a,b);
if(p== || p==) return();
if(p==) return();
if(p==) return();
} int
dp()
{
int i,j,k,mini;
for(i=;i<=n;i++)
for(j=;j<=;j++)
for(k=;k<=;k++)
{
f[i][a[i]][j]=min(f[i][a[i]][j],f[i-][k][j]+effort(k,a[i]));
f[i][j][a[i]]=min(f[i][j][a[i]],f[i-][j][k]+effort(k,a[i]));
} mini=;
for(i=;i<=;i++)
mini=min(mini,min(f[n][a[n]][i],f[n][i][a[n]])); printf("%d\n",mini);
return ;
} int
main()
{
while(true)
{
pre();
n=;
scanf("%d",&a[n]);
if(a[n]==) break;
init();
dp();
}
return ;
}

[LA] 2031 Dance Dance Revolution的更多相关文章

  1. UVA 1291 十四 Dance Dance Revolution

    Dance Dance Revolution Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  2. 递推DP UVA 1291 Dance Dance Revolution

    题目传送门 题意:给一串跳舞的动作,至少一只脚落到指定的位置,不同的走法有不同的体力消耗,问最小体力消费多少分析:dp[i][j][k] 表示前i个动作,当前状态(j, k)的最小消费,状态转移方程: ...

  3. Dance Dance Revolution

    今天我们来讲 Dance Dance Revolution这题 本题原网址 注意本题为多组输入输出,直到输入单个零而止(题面有点小问题) 很明显,此题为一道动态规划题(请不要妄想用贪心算法过这题,尽管 ...

  4. LA 2031

    Mr. White, a fat man, now is crazy about a game named ``Dance, Dance, Revolution". But his danc ...

  5. UVALive - 2031 Dance Dance Revolution 三维dp

    题目大意:有一个胖子在玩跳舞机.刚開始的位置在(0,0).跳舞机有四个方向键,上左下右分别相应1,2,3,4.如今有下面规则 1.假设从0位置移动到随意四个位置,消耗能量2 2.假设从非0位置跳到相邻 ...

  6. 2000 Asia shanghai Dance Dance Revolution

    思路:dp[i][x][y]表示第i个序列中,右脚在x位置,左脚在y位置时,其最小花费. 那么dp[i][x][y]=min(dp[i-1][a[i]][y]+cost[a[i]][x],dp[i-1 ...

  7. UVA 1291 Dance Dance Revolution(DP)

    意甲冠军:跳舞机有一个上5积分,分别central, top, bottom, left, right分,区区足站立还是需要1点物理,从一个单纯的脚central点上须要2点体力,从一个点上移动到相邻 ...

  8. TCP/UDP端口列表

    http://zh.wikipedia.org/wiki/TCP/UDP%E7%AB%AF%E5%8F%A3%E5%88%97%E8%A1%A8 TCP/UDP端口列表     本条目可通过翻译外语维 ...

  9. TCP/UDP 常用端口列表

    计算机之间依照互联网传输层TCP/IP协议不同的协议通信,都有不同的对应端口.所以,利用短信(datagram)的UDP,所采用的端口号码不一定和采用TCP的端口号码一样.以下为两种通信协议的端口列表 ...

随机推荐

  1. Unity脚本的生命周期中几个重要的方法

    1.function Update () {} 正常更新,用于更新逻辑.此方法每帧都会由系统自动调用一次.2.function LateUpdate () {} 推迟更新,此方法在Update() 方 ...

  2. QDialog 模态对话框与事件循环(exec其实就是调用了show和eventLoop.exec)

    起源 qtcn中文论坛中有网友问到: 假设程序正常运行时,只有一个简单的窗体A,此时只有一个GUI主线程,在这个主线程中有一个事件循环处理窗体上的事件.当此程序运行到某阶段时,弹出一个模态窗体B(书上 ...

  3. Android获取当前时间与星期几

    public class DataString { private static String mYear; private static String mMonth; private static ...

  4. 黑马程序员_Java面向对象_包

    7.包 7.1包(package) 对类文件进行分类管理. 给类提供多层命名空间. 写在程序文件的第一行. 类名的全称是:包名.类名. 包也是一种封装形式. 利用命令行自动生成文件夹格式:D:\jav ...

  5. 必看谷歌HTML/CSS规范

    背景 这篇文章定义了 HTML 和 CSS 的格式和代码规范,旨在提高代码质量和协作效率. 通用样式规范 协议 省略图片.样式.脚本以及其他媒体文件 URL 的协议部分( http:,https: ) ...

  6. AngularJs学习笔记3——自定义指令

    指令 概述: 前面也说过一些常用指令,用于快速入门.现在详细总结一下:指令用于实现各种页面的操作,是对于底层DOM操作的封装,扩展了HTML的行为,实现页面交互以及数据绑定. 指令是一种执行的信号,一 ...

  7. IOS详解TableView——选项抽屉(天猫商品列表)

    在之前的有篇文章讲述了利用HeaderView来写类似QQ好友列表的表视图. 这里写的天猫抽屉其实也可以用该方法实现,具体到细节每个人也有所不同.这里采用的是点击cell对cell进行运动处理以展开“ ...

  8. UVA 10198 Counting

    Counting The Problem Gustavo knows how to count, but he is now learning how write numbers. As he is ...

  9. IOS开发之格式化日期时间

    IOS开发之格式化日期时间(转)   在开发iOS程序时,有时候需要将时间格式调整成自己希望的格式,这个时候我们可以用NSDateFormatter类来处理. 例如: //实例化一个NSDateFor ...

  10. android调试系列--使用ida pro调试so

    1.工具介绍 IDA pro: 反汇编神器,可静态分析和动态调试. 模拟机或者真机:运行要调试的程序. 样本:阿里安全挑战赛第二题:http://pan.baidu.com/s/1eS9EXIM 2. ...