个人认为总体两种思想

1、让服务器尽可能的多做事情,榨干服务器资源,以最高系统吞吐量为目标

再好的硬件没有充分利用起来,都是白扯淡。

比如:

(1)  启动一次job尽可能的多做事情,一个job能完成的事情,不要两个job来做

通常来说前面的任务启动可以稍带一起做的事情就一起做了,以便后续的多个任务重用,与此紧密相连的是模型设计,好的模型特别重要.

(2) 合理设置reduce个数

reduce个数过少没有真正发挥hadoop并行计算的威力,但reduce个数过多,会造成大量小文件问题,数据量、资源情况只有自己最清楚,找到个折衷点,

(3) 使用hive.exec.parallel参数控制在同一个sql中的不同的job是否可以同时运行,提高作业的并发

2、让服务器尽量少做事情,走最优的路径,以资源消耗最少为目标

比如:

(1) 注意join的使用

若其中有一个表很小使用map join,否则使用普通的reduce join,注意hive会将join前面的表数据装载内存,所以较小的一个表在较大的表之前,减少内存资源的消耗

(2)注意小文件的问题

在hive里有两种比较常见的处理办法

第一是使用Combinefileinputformat,将多个小文件打包作为一个整体的inputsplit,减少map任务数

set mapred.max.split.size=256000000;

set mapred.min.split.size.per.node=256000000

set  Mapred.min.split.size.per.rack=256000000

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat

第二是设置hive参数,将额外启动一个MR Job打包小文件

hive.merge.mapredfiles = false 是否合并 Reduce 输出文件,默认为 False

hive.merge.size.per.task = 256*1000*1000 合并文件的大小

(3)注意数据倾斜

在hive里比较常用的处理办法

第一通过hive.groupby.skewindata=true控制生成两个MR Job,第一个MR Job Map的输出结果随机分配到reduce做次预汇总,减少某些key值条数过多某些key条数过小造成的数据倾斜问题

第二通过hive.map.aggr = true(默认为true)在Map端做combiner,假如map各条数据基本上不一样, 聚合没什么意义,做combiner反而画蛇添足,hive里也考虑的比较周到通过参数hive.groupby.mapaggr.checkinterval = 100000 (默认)hive.map.aggr.hash.min.reduction=0.5(默认),预先取100000条数据聚合,如果聚合后的条数/100000>0.5,则不再聚合

(4)善用multi insert,union all

multi insert适合基于同一个源表按照不同逻辑不同粒度处理插入不同表的场景,做到只需要扫描源表一次,job个数不变,减少源表扫描次数

union all用好,可减少表的扫描次数,减少job的个数,通常预先按不同逻辑不同条件生成的查询union all后,再统一group by计算,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条

(5) 参数设置的调优

集群参数种类繁多,举个例子比如

可针对特定job设置特定参数,比如jvm重用,reduce copy线程数量设置(适合map较快,输出量较大)

如果任务数多且小,比如在一分钟之内完成,减少task数量以减少任务初始化的消耗。可以通过配置JVM重用选项减少task的消耗

hive优化要点总结的更多相关文章

  1. Hive 12、Hive优化

    要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...

  2. hive优化之——控制hive任务中的map数和reduce数

    一.    控制hive任务中的map数: 1.    通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...

  3. Hive优化案例

    1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...

  4. 一起学Hive——总结常用的Hive优化技巧

    今天总结本人在使用Hive过程中的一些优化技巧,希望给大家带来帮助.Hive优化最体现程序员的技术能力,面试官在面试时最喜欢问的就是Hive的优化技巧. 技巧1.控制reducer数量 下面的内容是我 ...

  5. 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)

    第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...

  6. Mysql优化要点

    优化MySQL Mysql优化要点 慢查询 Explain mysql慢查询 注意事项 SELECT语句务必指明字段名称 SELECT *增加很多不必要的消耗(cpu.io.内存.网络带宽):增加了使 ...

  7. 大数据开发实战:Hive优化实战3-大表join大表优化

    5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...

  8. 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化

    Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...

  9. Hadoop生态圈-hive优化手段-作业和查询优化

    Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

随机推荐

  1. 杀掉linux所有进程的命令

    ps -ef|grep 'opt/*/tomcat_ssi'|grep -v "grep"|awk '{print $2}'|xargs kill -9

  2. 开启mysql慢查询日志并使用mysqldumpslow命令查看

    mysql服务器有一项功能,可以检测到哪条sql语句查询得比较慢,就是慢查询slowlog,现在介绍如何开启. 在[mysqld]下面增加如下代码: long_query_time = 1 log-s ...

  3. Visual Studio 2013如何破解(密钥激活)

    其实有个方法最简单,就是点击“帮助”,选择注册产品,点击打开页面右下边的“使用秘钥注册产品”,输入上述秘钥即可.   在输入密钥界面,输入密钥“BWG7X-J98B3-W34RT-33B3R-JVYW ...

  4. DOM基础之“寻找”子节点

    今天学习了JS中的DOM的内容,虽然小菜的理解不深,但希望能够记录下来,慢慢一点一点的进步,有更深的理解了,再回来补充. 首先,关于DOM的概念: 1.概念:DOM = document(文档)Obj ...

  5. gui小日历

    package MyCal; import java.awt.EventQueue; import javax.swing.JFrame; import javax.swing.JPanel; imp ...

  6. jquery mobile 按钮部件(包含图标的使用)

    参考网址:http://api.jquerymobile.com/1.3/button/ 注:按钮的三种写法 <a href="#" class="ui-btn u ...

  7. 博客迁移至http://www.maxzhang.com,欢迎访问!

    博客迁移至http://www.maxzhang.com,欢迎访问!

  8. 工作中用到的Jquery特效

    jQuery缓慢弹出下拉tab导航 http://sc.chinaz.com/jiaoben/130811578701.htm

  9. Java Tomcat 中调用.net DLL的方法

    近日一个java的项目,客户要求项目中必须使用其提供的加密机制,扔给了两个.net写的DLL.网络上搜了一圈也没找到啥东西,甚至看到人扬言此事绝无可能.郁闷当中考虑了一个思路.用C#做一个Com,调用 ...

  10. 第几天 AC 杭电

    第几天? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...