hive优化要点总结
个人认为总体两种思想:
1、让服务器尽可能的多做事情,榨干服务器资源,以最高系统吞吐量为目标
再好的硬件没有充分利用起来,都是白扯淡。
比如:
(1) 启动一次job尽可能的多做事情,一个job能完成的事情,不要两个job来做
通常来说前面的任务启动可以稍带一起做的事情就一起做了,以便后续的多个任务重用,与此紧密相连的是模型设计,好的模型特别重要.
(2) 合理设置reduce个数
reduce个数过少没有真正发挥hadoop并行计算的威力,但reduce个数过多,会造成大量小文件问题,数据量、资源情况只有自己最清楚,找到个折衷点,
(3) 使用hive.exec.parallel参数控制在同一个sql中的不同的job是否可以同时运行,提高作业的并发
2、让服务器尽量少做事情,走最优的路径,以资源消耗最少为目标
比如:
(1) 注意join的使用
若其中有一个表很小使用map join,否则使用普通的reduce join,注意hive会将join前面的表数据装载内存,所以较小的一个表在较大的表之前,减少内存资源的消耗
(2)注意小文件的问题
在hive里有两种比较常见的处理办法
第一是使用Combinefileinputformat,将多个小文件打包作为一个整体的inputsplit,减少map任务数
set mapred.max.split.size=256000000;
set mapred.min.split.size.per.node=256000000
set Mapred.min.split.size.per.rack=256000000
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat
第二是设置hive参数,将额外启动一个MR Job打包小文件
hive.merge.mapredfiles = false 是否合并 Reduce 输出文件,默认为 False
hive.merge.size.per.task = 256*1000*1000 合并文件的大小
(3)注意数据倾斜
在hive里比较常用的处理办法
第一通过hive.groupby.skewindata=true控制生成两个MR Job,第一个MR Job Map的输出结果随机分配到reduce做次预汇总,减少某些key值条数过多某些key条数过小造成的数据倾斜问题
第二通过hive.map.aggr = true(默认为true)在Map端做combiner,假如map各条数据基本上不一样, 聚合没什么意义,做combiner反而画蛇添足,hive里也考虑的比较周到通过参数hive.groupby.mapaggr.checkinterval = 100000 (默认)hive.map.aggr.hash.min.reduction=0.5(默认),预先取100000条数据聚合,如果聚合后的条数/100000>0.5,则不再聚合
(4)善用multi insert,union all
multi insert适合基于同一个源表按照不同逻辑不同粒度处理插入不同表的场景,做到只需要扫描源表一次,job个数不变,减少源表扫描次数
union all用好,可减少表的扫描次数,减少job的个数,通常预先按不同逻辑不同条件生成的查询union all后,再统一group by计算,不同表的union all相当于multiple inputs,同一个表的union all,相当map一次输出多条
(5) 参数设置的调优
集群参数种类繁多,举个例子比如
可针对特定job设置特定参数,比如jvm重用,reduce copy线程数量设置(适合map较快,输出量较大)
如果任务数多且小,比如在一分钟之内完成,减少task数量以减少任务初始化的消耗。可以通过配置JVM重用选项减少task的消耗
hive优化要点总结的更多相关文章
- Hive 12、Hive优化
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1. ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
- Hive优化案例
1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...
- 一起学Hive——总结常用的Hive优化技巧
今天总结本人在使用Hive过程中的一些优化技巧,希望给大家带来帮助.Hive优化最体现程序员的技术能力,面试官在面试时最喜欢问的就是Hive的优化技巧. 技巧1.控制reducer数量 下面的内容是我 ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- Mysql优化要点
优化MySQL Mysql优化要点 慢查询 Explain mysql慢查询 注意事项 SELECT语句务必指明字段名称 SELECT *增加很多不必要的消耗(cpu.io.内存.网络带宽):增加了使 ...
- 大数据开发实战:Hive优化实战3-大表join大表优化
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优 ...
- 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...
- Hadoop生态圈-hive优化手段-作业和查询优化
Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.
随机推荐
- 富文本文件CKEDITOR增加上传图片功能(.net)
如题,本身的CKEDITOR控件并没有开启上传图片的功能, 打开图像按钮,只有图像信息和高级两个table选项卡,版本不同,显示略有差异,我的实现是有两种方法都可以添加上传功能, 第一种方法使用CKE ...
- php防止重复提交问题
php防止重复提交问题 用户提交表单时可能因为网速的原因,或者网页被恶意刷新,致使同一条记录重复插入到数据库中,这是一个比较棘手的问题.我们可以从客户端和服务器端一起着手,设法避免同一表单的重复提交. ...
- OpenXml2.0 - 找不到类型或命名空间名称“DocumentFormat”
在使用 OpenXml SDK2.0的过程中,很是郁闷的是总是报 '找不到类型或命名空间名称“SpreadsheetDocument”(是否缺少 using 指令或程序集引用?)'的错误,命名已经添加 ...
- 微软分布式缓存 appfabric
appfabric为微软自家产的分布式缓存解决方案,随dotnet4.0一起发布.目前版本为1.1
- 解决CENTOS7虚拟机更改静态IP无法启动
在linuxman的编辑中,未出现问题.反复的查看原因未果,后查明是虚拟机所致.1.在开启网络时,有错误提示:Restarting network (via systemctl): Job for ...
- UIBezierPath和CAShapeLayer的关系
CAShapeLayer是基于贝塞尔曲线而存在的, 如果没有贝塞尔曲线提供路径来画出图形, CAShapeLayer就没有存在的意义, CAShapeLayer可以使得不用在drawRect:方法中实 ...
- Sql 日期时间 转换
sql server2000中使用convert来取得datetime数据类型样式(全) 日期数据格式的处理,两个示例: CONVERT(varchar(16), 时间一, 20) 结果:2007-0 ...
- Web之CSS开发技巧: CSS @media
CSS @media 规则非常适合于将 HTML 或 XML 文档定位为目标输出方法.目前,print 媒体的使用非常普遍,与实现单独的 “可打印版本” 相比,print 提供了更加整洁的方式来创建打 ...
- iPhone开发:Objective C 代码规范-iOS总结版
一,关于空行 A:.h中的空行 1,文件说明与头文件包涵(#import)之间空1行 2,头文件包涵(#import)之间,如果需要分类区别,各类别之间空1行 3,头文件包涵(#import)与@cl ...
- Acdream a + b
http://acdream.info/problem?pid=1007 两个 long long 相乘会超long long #include <cstdio> #include < ...