POJ2063 Investment 【全然背包】
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 8019 | Accepted: 2747 |
Description
John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him.
This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized
that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated.
Assume the following bonds are available:
Value | Annual interest |
4000 3000 |
400 250 |
With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes
sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000,
giving a yearly interest of $1 200.
Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.
Input
The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40).
The following line contains a single number: the number d (1 <= d <= 10) of available bonds.
The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is
never more than 10% of its value.
Output
Sample Input
1
10000 4
2
4000 400
3000 250
Sample Output
14050
题意:给定一个容量为weight的背包并且一開始本金为weight,再给定n个物品,每种物品的重量是w[i],价值是v[i],数量无限。将这n种物品有选择的装入背包中,使背包价值最大,一年后本金会加上背包中的价值,然后又一次分配背包物品,给定年份m,求m年后本金是多少。
题解:因为每种物品的重量都是1000的倍数,所以能够将每种物品和背包容量/=1000以降低内存消耗,因为1000000*1.1^40 / 1000 = 45000多,所以dp数组开到5万就足够了,剩下的就是全然背包问题了,将每年获得的最大价值增加本金中,最后再输出本金就可以。状态转移方程:dp[i][j] = max(dp[i-1][j-k*w[i] + k*v[i]),0<=k<=totalWeight/v[i];压缩成一维数组后内层循环顺序。
#include <stdio.h>
#include <string.h>
#define maxn 50000 int dp[maxn], w[42], v[42]; int main()
{
int t, totalWeight, years, i, j, capital, n;
scanf("%d", &t);
while(t--){
scanf("%d%d", &totalWeight, &years);
capital = totalWeight;
scanf("%d", &n);
for(i = 1; i <= n; ++i){
scanf("%d%d", &w[i], &v[i]);
w[i] /= 1000;
}
while(years--){
totalWeight = capital / 1000;
memset(dp, 0, sizeof(dp));
for(i = 1; i <= n; ++i){
for(j = w[i]; j <= totalWeight; ++j){
if(dp[j] < dp[j - w[i]] + v[i])
dp[j] = dp[j - w[i]] + v[i];
}
}
capital += dp[totalWeight];
}
printf("%d\n", capital);
}
return 0;
}
POJ2063 Investment 【全然背包】的更多相关文章
- HDU 1248 寒冰王座(全然背包:入门题)
HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...
- HDU 4508 湫湫系列故事——减肥记I(全然背包)
HDU 4508 湫湫系列故事--减肥记I(全然背包) http://acm.hdu.edu.cn/showproblem.php?pid=4508 题意: 有n种食物, 每种食物吃了能获得val[i ...
- A_全然背包
/* copyright: Grant Yuan algorithm: 全然背包 time : 2014.7.18 __________________________________________ ...
- nyist oj 311 全然背包 (动态规划经典题)
全然背包 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描写叙述 直接说题意,全然背包定义有N种物品和一个容量为V的背包.每种物品都有无限件可用.第i种物品的体积是c,价值是 ...
- HDU 1114 Piggy-Bank 全然背包
Piggy-Bank Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
- poj 1384 Piggy-Bank(全然背包)
http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- UVA 10465 Homer Simpson(全然背包: 二维目标条件)
UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...
- [2012山东ACM省赛] Pick apples (贪心,全然背包,枚举)
Pick apples Time Limit: 1000MS Memory limit: 165536K 题目描写叙述 Once ago, there is a mystery yard which ...
- UVA 357 Let Me Count The Ways(全然背包)
UVA 357 Let Me Count The Ways(全然背包) http://uva.onlinejudge.org/index.php?option=com_onlinejudge& ...
- HDU 1284 钱币兑换问题(全然背包:入门题)
HDU 1284 钱币兑换问题(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1284 题意: 在一个国家仅有1分,2分.3分硬币,将钱N ( ...
随机推荐
- nginx 日志格式
log_format main '$http_host $server_addr $remote_addr [$time_local] "$request" ' '$request ...
- perl 调用按钮输出到文本框
sub push_b4 { #$txt -> insert('end'); #select $txt; system("expect c:\\\\expect.txt >expe ...
- svn unable to connect to a repository at url 执行上下文错误 不能访问SVN服务器问题
1.检查visual SVN server 本地仓库服务是否正常启动 如果是SVN server service的的问题情形: (1).使用browser打开仓库位置,结果连接打不开. (2).查看s ...
- 【DSA MOOC】起泡排序的原理及常数优化
根据学堂在线TsinghuaX: 30240184X 数据结构(2015秋)这门课的内容,对bubblesort做了一些总结. 1. bubblesort(起泡排序),原理来自这样一个观察规律:若序列 ...
- 一个简单的flask程序
初始化 所有Flask程序都必须创建一个程序实例. 程序实例是Flask类的对象,经常使用下述代码创建: from flask import Flask app = Flask(__name__) F ...
- C# 获取网站的 IIS 站点名称 ,获取站点当前连接数
System.Web.Hosting.HostingEnvironment.ApplicationHost.GetSiteName(); System.Management.ManagementObj ...
- 《Effective C++ 》学习笔记——条款03
***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...
- 【main()的参数探究】
恩...今天研究信安的课件的时候看到一段对于main(int argc,char *argv[])的编程 所以探究探究main()函数的参数 探究程序如下: #include <cstdio&g ...
- Silverlight学习(二)
好久没来写博客了,这期间经历了春节,也因为忙于一个项目,所以博客被疏忽了.最近一段时间一直在用silverlight做项目,从来一开始的不熟悉渐渐的开始上手.今天记录一下自己学习prism的一些sam ...
- SQL server 数据库基本知识
SQL server 数据库基本知识 一.数据库: 分为层次型.网状型.关系型.现在通常都是使用关系型 常用的有:SQLserver.Oracle.DB2.Access.Visual Foxpro.M ...