Investment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 8019   Accepted: 2747

Description

John never knew he had a grand-uncle, until he received the notary's letter. He learned that his late grand-uncle had gathered a lot of money, somewhere in South-America, and that John was the only inheritor. 

John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him. 

This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized
that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated. 

Assume the following bonds are available:

Value Annual

interest
4000

3000
400

250

With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes
sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000,
giving a yearly interest of $1 200. 

Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.

Input

The first line contains a single positive integer N which is the number of test cases. The test cases follow. 

The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40). 

The following line contains a single number: the number d (1 <= d <= 10) of available bonds. 

The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is
never more than 10% of its value.

Output

For each test case, output – on a separate line – the capital at the end of the period, after an optimal schedule of buying and selling.

Sample Input

1
10000 4
2
4000 400
3000 250

Sample Output

14050

题意:给定一个容量为weight的背包并且一開始本金为weight,再给定n个物品,每种物品的重量是w[i],价值是v[i],数量无限。将这n种物品有选择的装入背包中,使背包价值最大,一年后本金会加上背包中的价值,然后又一次分配背包物品,给定年份m,求m年后本金是多少。

题解:因为每种物品的重量都是1000的倍数,所以能够将每种物品和背包容量/=1000以降低内存消耗,因为1000000*1.1^40 / 1000 = 45000多,所以dp数组开到5万就足够了,剩下的就是全然背包问题了,将每年获得的最大价值增加本金中,最后再输出本金就可以。状态转移方程:dp[i][j] = max(dp[i-1][j-k*w[i] + k*v[i]),0<=k<=totalWeight/v[i];压缩成一维数组后内层循环顺序。

#include <stdio.h>
#include <string.h>
#define maxn 50000 int dp[maxn], w[42], v[42]; int main()
{
int t, totalWeight, years, i, j, capital, n;
scanf("%d", &t);
while(t--){
scanf("%d%d", &totalWeight, &years);
capital = totalWeight;
scanf("%d", &n);
for(i = 1; i <= n; ++i){
scanf("%d%d", &w[i], &v[i]);
w[i] /= 1000;
}
while(years--){
totalWeight = capital / 1000;
memset(dp, 0, sizeof(dp));
for(i = 1; i <= n; ++i){
for(j = w[i]; j <= totalWeight; ++j){
if(dp[j] < dp[j - w[i]] + v[i])
dp[j] = dp[j - w[i]] + v[i];
}
}
capital += dp[totalWeight];
}
printf("%d\n", capital);
}
return 0;
}

POJ2063 Investment 【全然背包】的更多相关文章

  1. HDU 1248 寒冰王座(全然背包:入门题)

    HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...

  2. HDU 4508 湫湫系列故事——减肥记I(全然背包)

    HDU 4508 湫湫系列故事--减肥记I(全然背包) http://acm.hdu.edu.cn/showproblem.php?pid=4508 题意: 有n种食物, 每种食物吃了能获得val[i ...

  3. A_全然背包

    /* copyright: Grant Yuan algorithm: 全然背包 time : 2014.7.18 __________________________________________ ...

  4. nyist oj 311 全然背包 (动态规划经典题)

    全然背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 直接说题意,全然背包定义有N种物品和一个容量为V的背包.每种物品都有无限件可用.第i种物品的体积是c,价值是 ...

  5. HDU 1114 Piggy-Bank 全然背包

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  6. poj 1384 Piggy-Bank(全然背包)

    http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...

  7. UVA 10465 Homer Simpson(全然背包: 二维目标条件)

    UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...

  8. [2012山东ACM省赛] Pick apples (贪心,全然背包,枚举)

    Pick apples Time Limit: 1000MS Memory limit: 165536K 题目描写叙述 Once ago, there is a mystery yard which ...

  9. UVA 357 Let Me Count The Ways(全然背包)

    UVA 357 Let Me Count The Ways(全然背包) http://uva.onlinejudge.org/index.php?option=com_onlinejudge& ...

  10. HDU 1284 钱币兑换问题(全然背包:入门题)

    HDU 1284 钱币兑换问题(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1284 题意: 在一个国家仅有1分,2分.3分硬币,将钱N ( ...

随机推荐

  1. 【POJ 3009 Curling2.0 迷宫寻径 DFS】

    http://poj.org/problem?id=3009 模拟冰壶的移动,给出到达终点的最少投掷次数(不可达时为-1). 具体移动规则如下: 每次选四个方向之一,沿此方向一直前进,直到撞到bloc ...

  2. POJ 1811 Prime Test 素性测试 分解素因子

    题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的  素数与素性测试 素因子分解利用 ...

  3. flume-采集报错

    h2 { color: #fff; background-color: #7CCD7C; padding: 3px; margin: 10px 0px } h3 { color: #fff; back ...

  4. C#中静态与非静态方法比较【转】

    C#静态方法与非静态方法的区别不仅仅是概念上的,那么他们有什么具体的区别呢?让我们通过本文向你做一下解析. C#的类中可以包含两种方法:C#静态方法与非静态方法.那么他们的定义有什么不同呢?他们在使用 ...

  5. C#中的反射原理及应用(转)

    反射的概述 反射的定义:审查元数据并收集关于它的类型信息的能力.元数据(编译以后的最基本数据单元)就是一大堆的表,当编译程序集或者模块时,编译器会创建一个类定义表,一个字段定义表,和一个方法定义表等, ...

  6. C#中HashTable的用法 【转】

    一,哈希表(Hashtable)简述 在.NET Framework中,Hashtable是System.Collections命名空间提供的一个容器,用于处理和表现类似keyvalue的键值对,其中 ...

  7. andengine游戏引擎总结基础篇

      其他的游戏引擎知道的不是很对,不过相对于学java的童鞋们来说,那是个不错的选择啦,这个发动机咋样,google去吧.基础篇包括图片,字体,音效,数据读取,会了这点,就会做简单的小游戏啦 对于游戏 ...

  8. Fiddler使用教程(收藏)

    Fiddler是最强大最好用的Web调试工具之一,它能记录所有客户端和服务器的http和https请求,允许你监视,设置断点,甚至修改输入输出数据. 使用Fiddler无论对开发还是测试来说,都有很大 ...

  9. asp.net uploadfile 上传文件,连接已重置问题

    修改web.config中的配置 <httpRuntime maxRequestLength="/> //设置上传文件大小(kb)和响应时间(s) 针对iis7或更高版本另需要在 ...

  10. 【Tomcat】项目自动部署的链接重置错误

    在服务器中装好的tomcat7 ,(服务器是的window server 2008) 在tomcat bin目录运行的 service.bat install 安装服务.然后,设置服务项(服务项名称: ...