考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关的量只有t = dp(j) - F(i) * T(j) , 我们要最小化它. dp(j)->y, T(j)->x, 那么y = F(i) * x + t, 就是给一些点和一个斜率...然后最小化截距, 显然维护下凸包就可以了. 然后因为无比坑爹的出题人....时间可以为负数, 所以要用平衡树维护(假如时间为非负数用单调队列就行了)....或者cdq分治. O(N log N)平衡树维护大家都应该会...cdq分治就是对于[l, r), m=(l+r)/2, 处理[m, r)的dp值对[l, m)dp值的贡献(这道题是从后往前dp). 具体就是暴力建[m, r)的凸包, 然后[l, m)的按斜率排序, 依次询问. 预处理一下, 时间复杂度就是O(N log N)了, 空间复杂度是O(N).

-------------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
 
using namespace std;
 
typedef long long ll;
 
const int maxn = 300009;
 
int N, S, V[maxn], q[maxn], stk[maxn], T[maxn], F[maxn];
ll dp[maxn];
 
void Init() {
scanf("%d%d", &N, &S);
for(int i = 0; i < N; i++) {
scanf("%d%d", T + i, F + i);
q[i] = N - i - 1;
}
T[N] = F[N] = 0;
for(int i = N; i--; )
T[i] += T[i + 1], F[i] += F[i + 1];
}
 
bool chk(int a, int b, int c) {
int xl = T[b] - T[a], xr = T[c] - T[b];
ll yl = dp[b] - dp[a], yr = dp[c] - dp[b];
return ((xl < 0) ^ (xr < 0)) ? yl * xr <= yr * xl : yl * xr >= yr * xl;
}
 
bool Jud(int a, int b, int k) {
ll x = T[b] - T[a], y = dp[b] - dp[a];
return x < 0 ? y > x * k : y < x * k;
}
 
ll calc(int x, int y) {
return dp[y] + ll(F[x]) * (T[x] - T[y] + S);
}
 
// [l, r)
void cdq(int l, int r) {
if(l + 1 == r) return;
int m = (l + r) >> 1;
int ql = l, qr = m;
for(int i = l; i < r; i++)
q[i] < m ? V[ql++] = q[i] : V[qr++] = q[i];
for(int i = l; i < r; i++) q[i] = V[i];
cdq(m, r);
int h = 0, t = -1;
for(int i = m; i < r; i++) {
while(t > 0 && chk(stk[t - 1], stk[t], q[i])) t--;
stk[++t] = q[i];
}
for(int i = l; i < m; i++) {
while(h < t && Jud(stk[h], stk[h + 1], F[q[i]])) h++;
dp[q[i]] = min(dp[q[i]], calc(q[i], stk[h]));
}
cdq(l, m);
ql = l, qr = m;
for(int i = l; i < r; i++) if(ql >= m) {
V[i] = q[qr++];
} else if(qr >= r) {
V[i] = q[ql++];
} else
V[i] = T[q[ql]] < T[q[qr]] ? q[ql++] : q[qr++];
for(int i = l; i < r; i++) q[i] = V[i];
}
 
void Work() {
for(int i = 0; i < N; i++)
dp[i] = ll(F[i]) * (T[i] + S);
cdq(0, N);
printf("%lld\n", dp[0]);
}
 
int main() {
Init();
Work();
return 0;
}

-------------------------------------------------------------------------------------------------

2726: [SDOI2012]任务安排

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 660  Solved: 171
[Submit][Status][Discuss]

Description

机器上有N个需要处理的任务,它们构成了一个序列。这些任务被标号为1到N,因此序列的排列为1,2,3...N。这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和。注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

Input

第一行两个整数,N,S。
接下来N行每行两个整数,Ti,Fi。

Output

一个整数,为所求的答案。

Sample Input

5 1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

HINT

Source

BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )的更多相关文章

  1. bzoj 2726: [SDOI2012]任务安排【cdq+斜率优化】

    cdq复健.jpg 首先列个n方递推,设sf是f的前缀和,st是t的前缀和: \[ f[i]=min(f[j]+s*(sf[n]-sf[j])+st[i]*(sf[i]-sf[j])) \] 然后移项 ...

  2. BZOJ.2726.[SDOI2012]任务安排(DP 斜率优化)

    题目链接 数据范围在这:https://lydsy.com/JudgeOnline/wttl/thread.php?tid=613, 另外是\(n\leq3\times10^5\). 用\(t_i\) ...

  3. BZOJ 2726: [SDOI2012]任务安排 [斜率优化DP 二分 提前计算代价]

    2726: [SDOI2012]任务安排 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 868  Solved: 236[Submit][Status ...

  4. bzoj 2726 [SDOI2012]任务安排(斜率DP+CDQ分治)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2726 [题意] 将n个任务划分成若干个块,每一组Mi任务花费代价(T+sigma{ t ...

  5. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

  6. BZOJ 2726 [SDOI2012] 任务安排 - 斜率优化dp

    题解 转移方程与我的上一篇题解一样 : $S\times sumC_j  + F_j = sumT_i \times sumC_j + F_i - S \times sumC_N$. 分离成:$S\t ...

  7. BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治

    2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...

  8. BZOJ 2726: [SDOI2012]任务安排 斜率优化 + 凸壳二分 + 卡精

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  9. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

随机推荐

  1. HDU2054_A == B ?【模拟题】【大数】【水的问题】

    A == B ? Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. 【递归】【3月周赛1】【Problem B】

    Problem B Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Sub ...

  3. PropertyGrid--为复杂属性提供编辑功能

    零.引言 PropertyGrid用来显示某一对象的属性,但是并不是所有的属性都能编辑,基本数据类型(int, double等)和.Net一些封装的类型(Size,Color等)可以编辑,但是对于自己 ...

  4. Http权威指南笔记(一) URI URL URN 关系

    定义 URI:统一资源标识符(Uniform Resource Indentifier)用来标识服务器上的资源. URL:统一资源定位符(Uniform Resouce Locator)是资源标识符最 ...

  5. Oracle 12c多租户架构浅析

    Oracle数据库12c的一大创新即是其采用的多租户架构.对于多租户这项新功能,业内的评价褒贬不一.有的声音认为,这项功能的用处不是特别大,但在某些场景或特定的环境下,多租户依然有它的用处.其最大的用 ...

  6. 【IOS学习基础】OC类的相关

    几天前突然在别人的类的.m文件中看到这么一句代码:@synthesize xxxx = _xxxx; 当时愣是没理解啥意思,过后才缓过神来发现原来是把一些类的基础知识忘记了,虽然不用过多去深究以前的一 ...

  7. 使用XmlReader读取xml文件之二

    在.net开发中经常需要读写xml形式的文件(app.config和web.config分别是WinForm和WebForm中使用到的 xml文件的一个特列,并且微软提供了通用的方法,在此就不赘述了) ...

  8. 在 WinForm 中打开页面采用POST方式传参http。可以多个参数传递,返回json字符串

    //调用方法 Dictionary<string, string> postData = new Dictionary<string, string>(); postData. ...

  9. Linux man 后面的数字含义及作用

    Linux的man很强大,该手册分成很多section,使用man时可以指定不同的section来浏览,各个section意义如下: 1 Executable programs or shell co ...

  10. SQL SERVER 2008 架构

    架构: 一个容器 包含表,视图,数据库对象等等. 相当于命名空间 如何创建一个架构: 1. 图形向导 2.命令 create schema 在sqlserver 2005中,可能大家在工作或学习的时候 ...