BZOJ 2440 完全平方数
2440: [中山市选2011]完全平方数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 966 Solved: 457
[Submit][Status]
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
1
13
100
1234567
Sample Output
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
Source
——分割线——
好吧,这道题是一个裸的莫比乌斯反演,好吧,在做这题之前我只是知道它,完全不晓得这么神奇!莫比乌斯函数的定义是如果I质因数分解中有任意一个大于1的指数就为0,否则为-1。这样,由这道题的题目和容斥原理,平方数就要加上有奇数个质数平方因子的数,在减去偶数个质数的平方的个数,就是平方数的个数!
具体代码嘛:
/*Author:WNJXYK*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; #define LL long long const int Maxn=100000;
LL miu[Maxn+10]; inline void getMiu(){
for (int i=1;i<=Maxn;i++){
LL target=i==1?1:0;
LL delta=target-miu[i];
miu[i]=delta;
for(int j=i+i;j<=Maxn;j+=i){
miu[j]+=delta;
}
}
} inline LL check(LL n){
LL sn=sqrt(n);
LL Ans=0;
for(int i=1;i<=sn;i++){
Ans+=miu[i]*(n/(i*i));
}
return Ans;
} inline LL getAns(LL k){
LL left=1,right=k*2+1,mid;
while(left+1<right){
mid=(left+right)/2;
if (check(mid)<k){
left=mid;
}else{
right=mid;
}
}
return right;
} int T;
int main(){
getMiu();
scanf("%d",&T);
for(int i=1;i<=T;i++){
LL k;
scanf("%lld",&k);
printf("%lld\n",getAns(k));
}
return 0;
}
BZOJ 2440 完全平方数的更多相关文章
- BZOJ 2440 完全平方数(莫比乌斯-容斥原理)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2440 题意:给定K.求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S ...
- 数学(莫比乌斯函数):BZOJ 2440 完全平方数
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些 数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而 这丝毫不影响他对其他数的热爱. 这 ...
- BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第K个没有平方因子的数 思路:首先,可以二分数字,然后问题就转变成x以内有多少无平方因 ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- bzoj 2440 完全平方数 【莫比乌斯函数】
题目 题意:第Ki 个不是完全平方数的正整数倍的数. 对于一个数t,t以内的数里的非完全平方数倍数的个数:num=1的倍数的数量−一个质数平方数(9,25,49...)的倍数的数量+两个质数的积平方数 ...
- BZOJ 2440 完全平方数 莫比乌斯反演模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...
- bzoj 2440 (莫比乌斯函数)
bzoj 2440 完全平方数 题意:找出第k个不是完全平方数的正整数倍的数. 例如 4 9 16 25 36什么的 通过容斥原理,我们减去所有完全数 4有n/4个,但是36这种会被重复减去, ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
随机推荐
- [转]Ubuntu 软件安装、查找、卸载--apt-get、apt-cache命令安全
# apt-get update——在修改/etc/apt/sources.list或者/etc/apt/preferences之後运行该命令.此外您需要定期运行这一命令以确保您的软件包列表是最新的. ...
- C/C++修改常量的值
C/C++中常量修饰const可以用来保证一些确定的量不会被一不小心改变,比如PI,一直是3.14159...... 但是不排除有时候也会需要修改常量的值,通过直接修改是不能达到目的. 比如: #in ...
- 在Linux中创建静态库和动态库 (转)
我们通常把一些公用函数制作成函数库,供其它程序使用.函数库分为静态库和动态库两种.静态 库在程序编译时会被连接到目标代码中,程序运行时将不再需要该静态库.动态库在程序编译时并不会被连接到目标代码中,而 ...
- (IOS)关于Xcode的架构(Architectures)设置
首先来了解一下Architectures中几个参数的含义 ARMv6:ARM11内核用于iPhone2G和iPhone3G中的架构 ARMv7:modern ARM内核用于iPhone3GS和iPho ...
- yoeman构建Asp.net core项目并且实现分层
在Mac上开发使用yoeman构建Asp.net core项目并且实现分层引用 1.Yoeman? yoeman是一个自动化脚手架工具.它提供很多generator,generator相当于Visua ...
- Json.Net系列教程 2.Net类型与JSON的映射关系
原文 Json.Net系列教程 2.Net类型与JSON的映射关系 首先谢谢大家的支持和关注.本章主要介绍.Net类型与JSON是如何映射的.我们知道JSON中类型基本上有三种:值类型,数组和对象.而 ...
- Nginx CORS实现JS跨域
1. 什么是跨域 简单地理解就是因为JavaScript同源策略的限制,a.com 域名下的js无法操作b.com或是c.a.com域名下的对象. 同源是指相同的协议.域名.端口.特别注意两点: 如果 ...
- 隐藏nginx 版本号信息(转)
为了安全,想将http请求响应头里的nginx版本号信息隐藏掉: 1. nginx配置文件里增加 server_tokens off; server_tokens作用域是http server loc ...
- Oracle 表空间操作
-- 查询已有表空间 SELECT TABLE_SPACENAME FROM DBA_TABLESPACES; -- 创建表空间 CREATE TABLESPACE SPACE DATAFILE ‘E ...
- ExpandableListView(二)替换箭头图标被拉伸的问题
之前写过一篇替换系统默认图标的文章,之后又发现了问题,当替换成自己的图片之后,图片被拉伸了!为了解决这个问题,我几乎尝试了所有方法,结果都不理想 我试过的方法,在布局里,把textview上的内容字体 ...