题目请戳这里

题目大意:给一个n*m的矩阵,给一些点(ri,ci)表示该点在第ri行第ci列。现在要覆盖所有的点,已知覆盖第i行代价为Ri,覆盖第j列代价为Cj。总代价是累乘的,求最小总代价能覆盖所有的点。

题目分析:最小割。增加一个超级源点和超级汇点,源点到行连边,边权为覆盖行的代价,每列到汇点建边,边权为覆盖该列的代价。对于给定的点对,ri->cj连边,边权无穷大。求一个最小割即可。因为根据割的性质,会将图分成2部分,一部分含源点,一部分含汇点,那么这个割集的边只可能为s->ri、ri->cj、cj->t中的某些边,而ri->cj权是无穷大的,所以不会选这些边,因此割集必在s->ri和cj->t中,那么割集中的边就代表选中要覆盖的行和列,因为要总代价最小,所以求出最小割就是最小总代价。

因为总代价是累乘的,所以要化乘法为加法,取对数。

trick:输出浮点数的时候%.f,%.lf会WA。。。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 105;
const int M = 5500;
const double inf = 100000000.0;
const double eps = 1e-8;
int m,n,l,num;
struct node
{
double c;
int to,next,pre;
}arc[M];
int head[N],sta[N],que[N],cnt[N],dis[N],rpath[N];
void build(int s,int e,double cap)
{
arc[num].to = e;
arc[num].c = cap;
arc[num].next = head[s];
head[s] = num ++;
arc[num - 1].pre = num;
arc[num].pre = num - 1;
arc[num].to = s;
arc[num].c = 0.0;
arc[num].next = head[e];
head[e] = num ++;
}
void re_Bfs()
{
int i,front,rear;
for(i = 0;i <= n + m + 1;i ++)
{
dis[i] = n + m + 2;
cnt[i] = 0;
}
front = rear = 0;
dis[n + m + 1] = 0;
cnt[0] = 1;
que[rear ++] = n + m + 1;
while(front != rear)
{
int u = que[front ++];
for(i = head[u];i != -1;i = arc[i].next)
{
if(arc[arc[i].pre].c < eps || dis[arc[i].to] < n + m + 2)
continue;
dis[arc[i].to] = dis[u] + 1;
cnt[dis[arc[i].to]] ++;
que[rear ++] = arc[i].to;
}
}
}
void ISAP()
{
re_Bfs();
int i,u;
double maxflow = 0.0;
for(i = 0;i <= n + m + 1;i ++)
sta[i] = head[i];
u = 0;
while(dis[0] < n + m + 2)
{
if(u == n + m + 1)
{
double curflow = inf;
for(i = 0;i != m + n + 1;i = arc[sta[i]].to)
curflow = min(curflow,arc[sta[i]].c);
for(i = 0;i != m + n + 1;i = arc[sta[i]].to)
{
arc[sta[i]].c = arc[sta[i]].c - curflow;
arc[arc[sta[i]].pre].c = arc[arc[sta[i]].pre].c + curflow;
}
maxflow = maxflow + curflow;
u = 0;
}
for(i = sta[u];i != -1;i = arc[i].next)
if(arc[i].c > eps && dis[arc[i].to] + 1 == dis[u])
break;
if(i != -1)
{
sta[u] = i;
rpath[arc[i].to] = arc[i].pre;
u = arc[i].to;
}
else
{
if((-- cnt[dis[u]]) == 0)
break;
sta[u] = head[u];
int Min = m + n + 2;
for(i = sta[u];i != -1;i = arc[i].next)
if(arc[i].c > eps)
Min = min(Min,dis[arc[i].to]);
dis[u] = Min + 1;
cnt[dis[u]] ++;
if(u != 0)
u = arc[rpath[u]].to;
}
}
printf("%.4lf\n",pow(10.0,maxflow));
}
int main()
{
int t,i;
int a,b;
double x;
scanf("%d",&t);
while(t --)
{
memset(head,-1,sizeof(head));
scanf("%d%d%d",&n,&m,&l);
for(i = 1;i <= n;i ++)
{
scanf("%lf",&x);
build(0,i,log10(x));
}
for(i = 1;i <= m;i ++)
{
scanf("%lf",&x);
build(n + i,m + n + 1,log10(x));
}
while(l --)
{
scanf("%d%d",&a,&b);
build(a,n + b,inf);
}
ISAP();
}
return 0;
}
//568K 16MS

poj3308Paratroopers(最小割)的更多相关文章

  1. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  2. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  5. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  6. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  7. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. CQOI 2016 不同的最小割

    题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...

随机推荐

  1. strdup函数的使用方法

    函数名: strdup 功  能: 将串复制到新建的位置处 用  法: char *strdup(char *str): 这个函数在linux的man手冊里解释为: The strdup() func ...

  2. cc2540 cc2541 低功耗实測和总结-与注意事项 - 低功耗小于10uA

    CC2541 CC2540 实现超低功耗是很重要的: 我们来总结一下实现方法: 1,有定时器在跑时会一直跑在  PM2  电流在  300uA左右.    没有定时器跑后会到 PM3 , 电流会少于1 ...

  3. #pragma的用法

    在所有的预处理指令中,#Pragma   指令可能是最复杂的了,它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作.#pragma指令对每个编译器给出了一个方法,在保持与C和 C++语言完全 ...

  4. 虎记:强大的nth-child(n)伪类选择器玩法

    写在前面的戏: 最近参加了度娘前端IFE的春季班,刷任务,百度真是有营销头脑,让咱们这帮未来的技术狂人为他到处打广告(我可不去哪),其中做的几个任务中有几个以前没有用到的东西, 也算是有些许收获(现在 ...

  5. mvc模式jsp+servel+dbutils oracle基本增删改查demo

    mvc模式jsp+servel+dbutils oracle基本增删改查demo 下载地址

  6. JavaSE_ 网络编程 目录(26)

    JavaSE学习总结第26天_网络编程26.01 网络编程概述26.02 网络模型概述和图解26.03 网络编程三要素概述26.04 网络编程三要素之IP概述126.05 InetAddress类的概 ...

  7. 删除链表的中间节点和a/b处节点

    [说明]: 本文是左程云老师所著的<程序员面试代码指南>第二章中“删除链表的中间节点和a/b处节点”这一题目的C++复现. 本文只包含问题描述.C++代码的实现以及简单的思路,不包含解析说 ...

  8. jquery自动识别输入的都是数字

    //自动判断输入的书否为正整数 function wds_purchase_keyup(t) { var val = $(t).val(); -]+$/.test(val) && va ...

  9. 【转】Win7下VS2010中配置Opencv2.4.4的方法(32位和64位都有效)(亲测成功)

    在vs2010下配置opencv是件痛苦的事情,一点点错误可能就会导致莫名其妙的报错,各种error让人郁闷不已,这里提供给大家一篇vs2010下配置opencv2.4.4的方法,我是64位的win7 ...

  10. addChildViewController ipad 中Controller的嵌套和叠加

    1.addChildViewController 在 base controller中添加子的controller,会自动调用子的controller中viewDidload,viewWillAppe ...