作者 Boris Lublinsky, Michael Segel ,译者 侯伯薇 发布于 2011年8月18日 |注意:QCon全球软件开发大会(北京)2016年4月21-23日,了解更多详情!

在Hadoop中执行的任务有时候需要把多个Map/Reduce作业连接到一起,这样才能够达到目的。[1]在Hadoop生态圈中,有一种相对比较新的组件叫做Oozie[2],它让我们可以把多个Map/Reduce作业组合到一个逻辑工作单元中,从而完成更大型的任务。本文中,我们会向你介绍Oozie以及使用它的一些方式。

什么是Oozie?

Oozie是一种Java Web应用程序,它运行在Java servlet容器——即Tomcat——中,并使用数据库来存储以下内容:

  • 工作流定义
  • 当前运行的工作流实例,包括实例的状态和变量

Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。我们会使用hPDL(一种XML流程定义语言)来描述这个图。

hPDL是一种很简洁的语言,只会使用少数流程控制和动作节点。控制节点会定义执行的流程,并包含工作流的起点和终点(start、end和fail节点)以及控制工作流执行路径的机制(decision、fork和join节点)。动作节点是一些机制,通过它们工作流会触发执行计算或者处理任务。Oozie为以下类型的动作提供支持: Hadoop map-reduce、Hadoop文件系统、Pig、Java和Oozie的子工作流(SSH动作已经从Oozie schema 0.2之后的版本中移除了)。

所有由动作节点触发的计算和处理任务都不在Oozie之中——它们是由Hadoop的Map/Reduce框架执行的。这种方法让Oozie可以支持现存的Hadoop用于负载平衡、灾难恢复的机制。这些任务主要是异步执行的(只有文件系统动作例外,它是同步处理的)。这意味着对于大多数工作流动作触发的计算或处理任务的类型来说,在工作流操作转换到工作流的下一个节点之前都需要等待,直到计算或处理任务结束了之后才能够继续。Oozie可以通过两种不同的方式来检测计算或处理任务是否完成,也就是回调和轮询。当Oozie启动了计算或处理任务的时候,它会为任务提供唯一的回调URL,然后任务会在完成的时候发送通知给特定的URL。在任务无法触发回调URL的情况下(可能是因为任何原因,比方说网络闪断),或者当任务的类型无法在完成时触发回调URL的时候,Oozie有一种机制,可以对计算或处理任务进行轮询,从而保证能够完成任务。

Oozie工作流可以参数化(在工作流定义中使用像${inputDir}之类的变量)。在提交工作流操作的时候,我们必须提供参数值。如果经过合适地参数化(比方说,使用不同的输出目录),那么多个同样的工作流操作可以并发。

一些工作流是根据需要触发的,但是大多数情况下,我们有必要基于一定的时间段和(或)数据可用性和(或)外部事件来运行它们。Oozie协调系统(Coordinator system)让用户可以基于这些参数来定义工作流执行计划。Oozie协调程序让我们可以以谓词的方式对工作流执行触发器进行建模,那可以指向数据、事件和(或)外部事件。工作流作业会在谓词得到满足的时候启动。

经常我们还需要连接定时运行、但时间间隔不同的工作流操作。多个随后运行的工作流的输出会成为下一个工作流的输入。把这些工作流连接在一起,会让系统把它作为数据应用的管道来引用。Oozie协调程序支持创建这样的数据应用管道。

安装Oozie

我们可以把Oozie安装在现存的Hadoop系统中,安装方式包括tarball、RPM和Debian包等。我们的Hadoop部署是Cloudera的CDH3,其中已经包含了Oozie。因此,我们只是使用yum把它拉下来,然后在edge节点[1]上执行安装操作。在Oozie的发布包中有两个组件——Oozie-client和Oozie-server。根据簇集的规模,你可以让这两个组件安装在同一台edge服务器上,也可能安装在不同的计算机上。Oozie服务器中包含了用于触发和控制作业的组件,而客户端中包含了让用户可以触发Oozie操作并与Oozie服务器通信的组件。

想要了解更多关于安装过程的信息,请使用Cloudera发布包,并访问Cloudera站点[2]

注: 除了包括安装过程的内容之外,它还建议把下面的shell变量OOZIE_URL根据需要添加到.login、.kshrc或者shell的启动文件中:

(export OOZIE_URL=http://localhost:11000/oozie)

简单示例

为了向你展示Oozie的使用方法,让我们创建一个简单的示例。我们拥有两个Map/Reduce作业[3]——一个会获取最初的数据,另一个会合并指定类型的数据。实际的获取操作需要执行最初的获取操作,然后把两种类型的数据——Lidar和Multicam——合并。为了让这个过程自动化,我们需要创建一个简单的Oozie工作流(代码1)。

<!--
Copyright (c) 2011 NAVTEQ! Inc. All rights reserved.
NGMB IPS ingestor Oozie Script
-->
<workflow-app xmlns='uri:oozie:workflow:0.1' name='NGMB-IPS-ingestion'>
<start to='ingestor'/>
<action name='ingestor'>
<java>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>default</value>
</property>
</configuration>
<main-class>com.navteq.assetmgmt.MapReduce.ips.IPSLoader</main-class>
<java-opts>-Xmx2048m</java-opts>
<arg>${driveID}</arg>
</java>
<ok to="merging"/>
<error to="fail"/>
</action>
<fork name="merging">
<path start="mergeLidar"/>
<path start="mergeSignage"/>
</fork>
<action name='mergeLidar'>
<java>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>default</value>
</property>
</configuration>
<main-class>com.navteq.assetmgmt.hdfs.merge.MergerLoader</main-class>
<java-opts>-Xmx2048m</java-opts>
<arg>-drive</arg>
<arg>${driveID}</arg>
<arg>-type</arg>
<arg>Lidar</arg>
<arg>-chunk</arg>
<arg>${lidarChunk}</arg>
</java>
<ok to="completed"/>
<error to="fail"/>
</action>
<action name='mergeSignage'>
<java>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.job.queue.name</name>
<value>default</value>
</property>
</configuration>
<main-class>com.navteq.assetmgmt.hdfs.merge.MergerLoader</main-class>
<java-opts>-Xmx2048m</java-opts>
<arg>-drive</arg>
<arg>${driveID}</arg>
<arg>-type</arg>
<arg>MultiCam</arg>
<arg>-chunk</arg>
<arg>${signageChunk}</arg>
</java>
<ok to="completed"/>
<error to="fail"/>
</action>
<join name="completed" to="end"/>
<kill name="fail">
<message>Java failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name='end'/>
</workflow-app>

代码1: 简单的Oozie工作流

这个工作流定义了三个动作:ingestor、mergeLidar和mergeSignage。并把每个动作都实现为Map/Reduce[4]作业。这个工作流从start节点开始,然后把控制权交给Ingestor动作。一旦ingestor步骤完成,就会触发fork控制节点 [4],它会并行地开始执行mergeLidar和mergeSignage[5]。这两个动作完成之后,就会触发join控制节点[6]。join节点成功完成之后,控制权就会传递给end节点,它会结束这个过程。

创建工作流之后,我们需要正确地对其进行部署。典型的Oozie部署是一个HDFS目录,其中包含workflow.xml(代码1)、config-default.xml和lib子目录,其中包含有工作流操作所要使用的类的jar文件。

(点击可以查看大图)

图1: Oozie部署

config-default.xml文件是可选的,通常其中会包含对于所有工作流实例通用的工作流参数。代码2中显示的是config-default.xml的简单示例。

<configuration>
<property>
<name>jobTracker</name>
<value>sachicn003:2010</value>
</property>
<property>
<name>nameNode</name>
<value>hdfs://sachicn001:8020</value>
</property>
<property>
<name>queueName</name>
<value>default</value>
</property>
</configuration>

代码2: Config-default.xml

完成了工作流的部署之后,我们可以使用Oozie提供的命令行工具[5],它可以用于提交、启动和操作工作流。这个工具一般会运行在Hadoop簇集[7]的edge节点上,并需要一个作业属性文件(参见配置工作流属性),见代码3。

oozie.wf.application.path=hdfs://sachicn001:8020/user/blublins/workflows/IPSIngestion
jobTracker=sachicn003:2010
nameNode=hdfs://sachicn001:8020

代码3: 作业属性文件

有了作业属性,我们就可以使用代码4中的命令来运行Oozie工作流。

oozie job –oozie http://sachidn002.hq.navteq.com:11000/oozie/ -D driveID=729-pp00002-2011-02-08-09-59-34 -D lidarChunk=4 -D signageChunk=20 -config job.properties –run

列表4: 运行工作流命令

配置工作流属性

在config-default.xml、作业属性文件和作业参数中有一些重叠,它们可以作为命令行调用的一部分传递给Oozie。尽管文档中没有清晰地指出何时使用哪个,但总体上的建议如下:

  • 使用config-default.xml定义对于指定工作流从未改变过的参数。
  • 对于给定的工作流部署通用的参数,建议使用作业属性。
  • 对于指定的工作流调用特定的参数使用命令行参数。

Oozie处理这三种参数的方式如下:

  • 使用所有命令行调用的参数
  • 如果那里有任何无法解析的参数,那么就是用作业配置来解析
  • 一旦所有其它方式都无法处理,那么就试着使用config-default.xm。

我们可以使用Oozie控制台(图2)来观察工作流执行的进程和结果。

(点击可以查看大图)

图2: Oozie控制台

我们还可以使用Oozie控制台来获得操作执行的细节,比方说作业的日志[8](图3)。

(点击可以查看大图)

图3: Oozie控制台——作业日志

编程方式的工作流调用

尽管上面所述的命令行界面能够很好地用于手动调用Oozie,但有时使用编程的方式调用Oozie更具有优势。当Oozie工作流是特定的应用程序或者大型企业过程的一部分,这就会很有用。我们可以使用Oozie Web Services APIs [6]或者Oozie Java client APIs [7]来实现这种编程方式的调用。代码5中展现的就是很简单的Oozie Java客户端的例子,它会触发上面描述的过程。

package com.navteq.assetmgmt.oozie;

import java.util.LinkedList;
import java.util.List;
import java.util.Properties; import org.apache.oozie.client.OozieClient;
import org.apache.oozie.client.OozieClientException;
import org.apache.oozie.client.WorkflowJob;
import org.apache.oozie.client.WorkflowJob.Status; public class WorkflowClient { private static String OOZIE_URL = "http://sachidn002.hq.navteq.com:11000/oozie/";
private static String JOB_PATH = "hdfs://sachicn001:8020/user/blublins/workflows/IPSIngestion";
private static String JOB_Tracker = "sachicn003:2010";
private static String NAMENode = "hdfs://sachicn001:8020"; OozieClient wc = null; public WorkflowClient(String url){
wc = new OozieClient(url);
} public String startJob(String wfDefinition, List<WorkflowParameter> wfParameters)
throws OozieClientException{ // create a workflow job configuration and set the workflow application path
Properties conf = wc.createConfiguration();
conf.setProperty(OozieClient.APP_PATH, wfDefinition); // setting workflow parameters
conf.setProperty("jobTracker", JOB_Tracker);
conf.setProperty("nameNode", NAMENode);
if((wfParameters != null) && (wfParameters.size() > 0)){
for(WorkflowParameter parameter : wfParameters)
conf.setProperty(parameter.getName(), parameter.getValue());
}
// submit and start the workflow job
return wc.run(conf);
} public Status getJobStatus(String jobID) throws OozieClientException{
WorkflowJob job = wc.getJobInfo(jobID);
return job.getStatus();
} public static void main(String[] args) throws OozieClientException, InterruptedException{ // Create client
WorkflowClient client = new WorkflowClient(OOZIE_URL);
// Create parameters
List<WorkflowParameter> wfParameters = new LinkedList<WorkflowParameter>();
WorkflowParameter drive = new WorkflowParameter("driveID","729-pp00004-2010-09-01-09-46");
WorkflowParameter lidar = new WorkflowParameter("lidarChunk","4");
WorkflowParameter signage = new WorkflowParameter("signageChunk","4");
wfParameters.add(drive);
wfParameters.add(lidar);
wfParameters.add(signage);
// Start Oozing
String jobId = client.startJob(JOB_PATH, wfParameters);
Status status = client.getJobStatus(jobId);
if(status == Status.RUNNING)
System.out.println("Workflow job running");
else
System.out.println("Problem starting Workflow job");
}
}

代码5: 简单的Oozie Java客户端

在此,我们首先使用Oozie服务器URL对工作流客户端进行初始化。初始化过程完成之后,我们就可以使用客户端提交并启动作业(startJob方法),获得正在运行的作业的状态(getStatus方法),以及进行其他操作。

构建java动作,向工作流传递参数

在之前的示例中,我们已经展示了如何使用标签向Java节点传递参数。由于Java节点是向Oozie引入自定义计算的主要方法,因此能够从Java节点向Oozie传递数据也同样重要。

根据Java节点的文档[3],我们可以使用“capture-output””元素把Java节点生成的值传递回给Oozie上下文。然后,工作流的其它步骤可以通过EL-functions访问这些值。返回值需要以Java属性格式文件写出来。我们可以通过“JavaMainMapper.OOZIE_JAVA_MAIN_CAPTURE_OUTPUT_FILE”常量从System属性中获得这些属性文件的名称。代码6是一个简单示例,演示了如何完成这项操作。

package com.navteq.oozie;
import java.io.File;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.util.Calendar;
import java.util.GregorianCalendar;
import java.util.Properties; public class GenerateLookupDirs { /**
* @param args
*/
public static final long dayMillis = 1000 * 60 * 60 * 24;
private static final String OOZIE_ACTION_OUTPUT_PROPERTIES = "oozie.action.output.properties"; public static void main(String[] args) throws Exception {
Calendar curDate = new GregorianCalendar();
int year, month, date;
String propKey, propVal; String oozieProp = System.getProperty(OOZIE_ACTION_OUTPUT_PROPERTIES);
if (oozieProp != null) {
File propFile = new File(oozieProp);
Properties props = new Properties(); for (int i = 0; I < 8; ++i) {
year = curDate.get(Calendar.YEAR);
month = curDate.get(Calendar.MONTH) + 1;
date = curDate.get(Calendar.DATE);
propKey = "dir"+i;
propVal = year + "-" +
(month < 10 ? "0" + month : month) + "-" +
(date < 10 ? "0" + date : date);
props.setProperty(propKey, propVal);
curDate.setTimeInMillis(curDate.getTimeInMillis() - dayMillis);
}
OutputStream os = new FileOutputStream(propFile);
props.store(os, "");
os.close();
} else
throw new RuntimeException(OOZIE_ACTION_OUTPUT_PROPERTIES
+ " System property not defined");
}
}

代码6: 向Oozie传递参数

在这个示例中,我们假设在HDFS中有针对每个日期的目录。这样,这个类首先会获得当前日期,然后再获得离现在最近的7个日期(包括今天),然后把目录名称传递回给Oozie。

结论

在本文我们介绍了Oozie,它是针对Hadoop的工作流引擎,并且提供了使用它的简单示例。在下一篇文章中,我们会看到更复杂的例子,让我们可以更进一步讨论Oozie的特性。

致谢

非常感谢我们在Navteq的同事Gregory Titievsky,他为我们提供了一些例子。

关于作者

Boris Lublinsky是NAVTEQ公司的首席架构师,在这家公司中他的工作是为大型数据管理和处理、SOA以及实现各种NAVTEQ的项目定义架构的愿景。 他还是InfoQ的SOA编辑,以及OASIS的SOA RA工作组的参与者。Boris是一位作者,还经常发表演讲,他最新的一本书是《Applied SOA》。

Michael Segel在过去二十多年间一直与客户写作,识别并解决他们的业务问题。 Michael已经作为多种角色、在多个行业中工作过。他是一位独立顾问,总是期望能够解决所有有挑战的问题。Michael拥有俄亥俄州立大学的软件工程学位。


[1]edge节点是安装有Hadoop库的计算机,但不是真正簇集中的一部分。它是为能够连接到簇集中的应用程序所用的,并且会部署辅助服务以及能够直接访问簇集的最终用户应用程序。

[2]请参看Oozie安装的链接。

[3]这些作业的细节和本文无关,所以在其中没有描述。

[4]Map/Reduce作业能够以两种不同的方式在Oozie中实现——第一种是作为真正的Map/Reduce动作[2],其中你会指定Mapper和Reducer类以及它们的配置信息;第二种是作为Java动作[3],其中你会使用Hadoop API来指定启动Map/Reduce作业的类。因为我们所有的Java主函数都是使用Hadoop API,并且还实现了一些额外的功能,所以我们选择了第二种方法。

[5] Oozie确保两个动作会并行地提交给作业跟踪程序。在执行过程中实际的并行机制并不在Oozie的控制之内,并且依赖于作业的需求、簇集的能力以及Map/Reduce部署所使用的调度程序。

[6]join动作的功能是要同步fork动作启动的多个并行执行的线程。如果fork启动的所有执行的线程都能够成功完成,那么join动作就会等待它们全部完成。如果有至少一个线程执行失败,kill节点会“杀掉”剩余运行的线程。

[7] 这个节点不需要是安装了Oozie的计算机。

[8] Oozie的作业日志会包含工作流执行的细节,想要查看动作执行的细节,我们需要切换到Hadoop的Map/Reduce管理页面。

查看英文原文:Introduction to Oozie


给InfoQ中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家加入到InfoQ中文站用户讨论组中与我们的编辑和其他读者朋友交流。

Oozie入门的更多相关文章

  1. oozie 入门

    转自:http://blackproof.iteye.com/blog/1928122 oozie概述:oozie能干什么 oozie格式:怎么用oozie oozie执行:怎么运行oozie ooz ...

  2. Oozie 快速入门

    设想一下,当你的系统引入了spark或者hadoop以后,基于Spark和Hadoop已经做了一些任务,比如一连串的Map Reduce任务,但是他们之间彼此右前后依赖的顺序,因此你必须要等一个任务执 ...

  3. oozie工作流相关入门整理

        Oozie支持工作流,其定义通过将多个Hadoop Job的定义按照一定的顺序组织起来,然后作为一个整体按照既定的路径运行.一个工作流已经定义了,通过启动该工作流Job,就会执行该工作流中包含 ...

  4. 入门大数据---安装ClouderaManager,CDH和Impala,Hue,oozie等服务

    1.要求和支持的版本 (PS:我使用的环境,都用加粗标识了.) 1.1 支持的操作系统版本 操作系统 版本 RHEL/CentOS/OL with RHCK kernel 7.6, 7.5, 7.4, ...

  5. 大数据技术Hadoop入门理论系列之一----hadoop生态圈介绍

    Technorati 标记: hadoop,生态圈,ecosystem,yarn,spark,入门 1. hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用 ...

  6. Hadoop入门

    一.Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 2)Hadoop主要解决,海量数据的存储和海量数据的分析计算问题. 3)广义上来说,Hadoop通常是指 ...

  7. 【Oozie学习之一】Oozie

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 CM5.4 一.简介Oozie由Cloudera公司贡献给A ...

  8. [转帖]Flink(一)Flink的入门简介

    Flink(一)Flink的入门简介 https://www.cnblogs.com/frankdeng/p/9400622.html 一. Flink的引入 这几年大数据的飞速发展,出现了很多热门的 ...

  9. 大数据学习笔记之Hadoop(一):Hadoop入门

    文章目录 大数据概论 一.大数据概念 二.大数据的特点 三.大数据能干啥? 四.大数据发展前景 五.企业数据部的业务流程分析 六.企业数据部的一般组织结构 Hadoop(入门) 一 从Hadoop框架 ...

随机推荐

  1. iOS SDK原生JSON解析

    - (IBAction)touchReadButton:(id)sender { NSData *jsonData = [[NSData alloc] initWithContentsOfFile:J ...

  2. 键盘code码速查表

    键盘 Key Code对照表 字母和数字键的键码值(keyCode) 按键 键码 按键 键码 按键 键码 按键 键码 A 65 J 74 S 83 1 49 B 66 K 75 T 84 2 50 C ...

  3. Kyoya and Colored Balls(组合数)

    Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  4. vi/vim经常使用命令

    工作模式 插入命令 a 在光标后附加文本 A 在本行行尾附加文本 i 在光标前插入 I 在本行行首插入文本 o 在光标以下插入新的一行 O 在光标上面插入新的一行 定位命令 h 左移一个字符/ 向左的 ...

  5. Flex布局实践

    介绍常见布局的Flex写法. 你会看到,不管是什么布局,Flex往往都可以几行命令搞定. 我只列出代码,详细的语法解释请查阅<Flex布局教程:语法篇>.我的主要参考资料是Landon S ...

  6. SQL SERVER 2005 错误:18456

    安装好SQL SERVER 2005之后,Windows身份验证无法登陆,出现18456错误.而sql server 身份验证可以用sa用户登陆. 解决办法: 用sa用户登陆,执行SQL 语句: CR ...

  7. windows下sqlplus / as sysdba报ora-12560的解决方法

    环境:win7_64位.数据库版本ORACLE11G_R2 在CMD窗口,使用下面三个命令可正常连接数据库:C:\Users\Administrator> sqplus /nolog C:\Us ...

  8. C语言的面向对象设计 —— 对 X264/FFMPEG 架构探讨

    1.为什么要用C语言 直到今天,C语言虽然不是使用人数最多的语言了,但是C没有老去,在很多的核心系统代码里,依然跑的是设计精美的C,绝大多数的嵌入式开发核心库软件是C开发的,多数标准算法是基于标准C设 ...

  9. (Access denied for user 'root'@'localhost' (using password: NO))

    先记一下遇到的问题: 项目使用mySql服务器,用户名密码正常,权限齐全,mySql服务已启动,但运行java web程序时显示: 目前正在解决 解决方案: 1.打开MySQL目录下的my.ini文件 ...

  10. BaseFragment的定义—所有Fragment的父类

    public abstract class BaseActivity extends AppCompatActivity implements View.OnClickListener { prote ...