A:A. Points and Segments (easy)

题目看了n久,開始认为尼玛这是div2的题目么,题目还标明了easy。。

意思是给你一n个点,m个区间,在n个点上放蓝球或者红球,然后让你找一种选择方案使得m个区间内的蓝球和红球数量之差不超过1.

開始想过用dfs,只是这仅仅是div2的A题而已。。

然后想了下,直接输出010101序列不就能够么。

交了一发,发现要先排个序,再输出就能够了。

AC代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; int res[150]; struct node
{
int x,id;
}nod[150]; bool cmp(node a,node b)
{
return a.x<b.x;
} int main()
{
int i,n,m;
int a,b; while(~scanf("%d%d",&n,&m))
{
for(i=0;i<n;i++)
scanf("%d",&nod[i].x),nod[i].id=i;
for(i=0;i<m;i++)
scanf("%d%d",&a,&b);
sort(nod,nod+n,cmp); int t=0;
for(i=0;i<n;i++)
res[nod[i].id]=(++t)%2; printf("%d",res[0]);
for(i=1;i<n;i++)
printf(" %d",res[i]);
printf("\n");
}
return 0;
}

B:B. Balls Game

题目大意:给你n个球,然后最多k个种类,同类的挨在一起同类的超过三个的能够抵消。開始的n个没有抵消的情况,问给你一个颜色为x的球,问你用这个球insert进去最多能消掉n个球里面的个数。

直接模拟就好,只是,自己被自己坑了好久。。

AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#define ll long long
using namespace std; int a[105]; int main()
{
int n,k,x; int i;
while(cin>>n>>k>>x)
{
int res=0;
for(i=1;i<=n;i++)
scanf("%d",&a[i]); for(i=1;i<=n;i++)
{
int ans=0,t1,t2;
if(a[i]==x&&i+1<=n&&a[i+1]==x)
{
ans+=2;
t1=i-1,t2=i+2; while(t1>=1&&t2<=n)
{
int cnt=0;
int x=a[t1];
while(a[t2]==x&&t2<=n)
{
cnt++;
t2++;
}
while(a[t1]==x&&t1>=1)
{
cnt++;
t1--;
}
if(cnt<3) break;
else ans+=cnt;
}
res=max(res,ans);
}
} cout<<res<<endl;
}
return 0;
}
/*
10 2 2
2 2 1 1 2 2 1 1 2 2
*/

C. Xor-tree
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Iahub is very proud of his recent discovery, propagating trees. Right now, he invented a new tree, called xor-tree. After this new revolutionary discovery, he invented a game for kids which uses xor-trees.

The game is played on a tree having n nodes, numbered from 1 to n.
Each node i has an initial value initi,
which is either 0 or 1. The root of the tree is node 1.

One can perform several (possibly, zero) operations on the tree during the game. The only available type of operation is to pick a nodex. Right after someone
has picked node x, the value of node x flips, the
values of sons of x remain the same, the values of sons of sons of x flips,
the values of sons of sons of sons of x remain the same and so on.

The goal of the game is to get each node i to have value goali,
which can also be only 0 or 1. You need to reach the goal of the game by using minimum number of operations.

Input

The first line contains an integer n (1 ≤ n ≤ 105).
Each of the next n - 1 lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi)
meaning there is an edge between nodes ui and vi.

The next line contains n integer numbers, the i-th
of them corresponds to initi (initi is
either 0 or 1). The following line also contains ninteger numbers, the i-th
number corresponds to goali (goali is
either 0 or 1).

Output

In the first line output an integer number cnt, representing the minimal number of operations you perform. Each of the next cnt lines
should contain an integer xi,
representing that you pick a node xi.

Sample test(s)
input
10
2 1
3 1
4 2
5 1
6 2
7 5
8 6
9 8
10 5
1 0 1 1 0 1 0 1 0 1
1 0 1 0 0 1 1 1 0 1
output
2
4
7

题目大意:给你一颗树,给你全部节点的初始状态,然后再给你一个须要转变到的状态,假设一个节点的状态发生改变,那么他的儿子节点不变^0,他的儿子的儿子节点^1,他儿子的儿子的儿子。。找最小的次数。



直接从根,(题目说了根是1)往下dfs,就可以。

AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=100005; vector <int> mq[maxn]; int sta[maxn],en[maxn];
int res[maxn];
int cnt; void dfs(int cur,int fa,int u,int v)
{
int flag=0;
sta[cur]^=v;
if(sta[cur]!=en[cur])
{
flag=1;
res[cnt++]=cur;
}
v=flag^v; for(int i=0;i<mq[cur].size();i++)
{
int nex=mq[cur][i];
if(nex!=fa)
{
dfs(nex,cur,v,u);
}
}
} int main()
{
int n,i; while(cin>>n)
{
cnt=0;
int u,v;
for(i=1;i<=n;i++)
mq[i].clear();
for(i=1;i<n;i++)
{
cin>>u>>v;
mq[u].push_back(v);
mq[v].push_back(u);
} for(i=1;i<=n;i++) cin>>sta[i];
for(i=1;i<=n;i++) cin>>en[i];
dfs(1,0,0,0); cout<<cnt<<endl;
for(i=0;i<cnt;i++)
cout<<res[i]<<endl;
} return 0;
} /*
10
2 1
3 1
4 2
5 1
6 2
7 5
8 6
9 8
10 5
1 0 1 1 0 1 0 1 0 1
1 0 1 0 0 1 1 1 0 1
*/

D:D. Working out

题目大意:一个n*m的格子,一个人从(1,1)走到(n,m),一个人从(n,1)走到(1,m),他们速度不同,必须有一个交点,在那个交点那里的分数不算,其它两个人走过的格子分数都仅仅算一次,问最大得多少分。第一个人仅仅能往右下方向走,第二个人仅仅能往右上方向走。

解题思路:我们须要枚举他们的交点,然后判定情况。须要记录来的方向,dp,先四次dp预处理,然后找最大值。详见图片与代码。

能够思考下,仅仅有这两种情况,不然就会重叠,而重叠的仅仅算一次的。

AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#define ll long long
using namespace std; int dp[4][1005][1005];
int a[1005][1005];
int n,m; void solve()
{
int i,j;
for(i=1; i<=n; i++) //左上
for(j=1; j<=m; j++)
dp[0][i][j] = max(dp[0][i-1][j],dp[0][i][j-1]) + a[i][j]; for(i=1; i<=n; i++) //右上
for(j=m; j>=1; j--)
dp[1][i][j] = max(dp[1][i-1][j],dp[1][i][j+1]) + a[i][j]; for(i=n; i>=1; i--) //左下
for(j=1; j<=m; j++)
dp[2][i][j] = max(dp[2][i][j-1],dp[2][i+1][j]) + a[i][j]; for(i=n; i>=1; i--) //右下
for(j=m;j>=1; j--)
dp[3][i][j] = max(dp[3][i][j+1],dp[3][i+1][j]) + a[i][j];
} int main()
{
int i,j; memset(dp,0,sizeof(dp));
while(cin>>n>>m)
{
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
scanf("%d",&a[i][j]); solve();
int res = 0;
for(i=2; i<n; i++)
for(j=2; j<m; j++)
{
int t1,t2;
t1=dp[0][i-1][j]+dp[3][i+1][j]+dp[1][i][j+1]+dp[2][i][j-1];
t2=dp[0][i][j-1]+dp[3][i][j+1]+dp[1][i-1][j]+dp[2][i+1][j];
//cout<<t1<<" "<<t2<<endl;
res=max(res,max(t1,t2));
} printf("%d\n",res);
}
return 0;
} /*
3 3
100 100 100
100 1 100
100 100 100
*/

E题,DFS不知怎样下手。

Codeforces #245(div2)的更多相关文章

  1. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  2. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  3. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  4. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  5. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  6. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

  7. Codeforces #263 div2 解题报告

    比赛链接:http://codeforces.com/contest/462 这次比赛的时候,刚刚注冊的时候非常想好好的做一下,可是网上喝了个小酒之后.也就迷迷糊糊地看了题目,做了几题.一觉醒来发现r ...

  8. codeforces 245 D. Restoring Table(位运算+思维)

    题目链接:http://codeforces.com/contest/245/problem/D 题意:给出一个矩阵b,b[i][j]=a[i]&a[j],b[i][i]=-1.然后求a[i] ...

  9. codeforces #round363 div2.C-Vacations (DP)

    题目链接:http://codeforces.com/contest/699/problem/C dp[i][j]表示第i天做事情j所得到最小的假期,j=0,1,2. #include<bits ...

随机推荐

  1. array_multisort 关联(string)键名保持不变,但数字键名会被重新索引。

    $array = [ '2' => [ 'title' => 'Flower', 'order' => 3 ], '3' => [ 'title' => 'Rock', ...

  2. Struts2(五)——核心拦截器

    Struts框架一共为我们提供了35个拦截器,其中默认的拦截器有18个,框架访问action的异常处理,配置信息处理,转发重定向选择,上传等等等等,都是这18个拦截器中设置的,起着非比寻常的作用.而这 ...

  3. Ajax——ajax调用数据总结

    在做人事系统加入批量改动的功能中,须要将前台中的数据传给后台.后台并运行一系列的操作. 通过查询和学习了解到能够通过ajax将值传入到后台,并在后台对数据进行操作. 说的简单点.就是ajax调用后台的 ...

  4. docker 实战---使用oracle xe作为开发数据库(六)

    oracle作为oltp的大佬,非常多行业应用都会用到它.那么在开发的过程中就不可避免的要使用oracle数据库,oracle数据库的版本号有好多,当中express版本号是免费的开发版.它的主要限制 ...

  5. Jquery ui datepicker 设置日期范围,如只能隔3天

    最近的后台项目前端使用了jquery ui 日历控件自然就使用了jquery ui 的   datepicker 后台数据比较好大,一般是千万级的和百万级的关联,查询会很慢,所以后加想多加些过滤条件, ...

  6. gcc和arm-linux-gcc区别

    安装arm-linux-gcc的时候,查了不少资料,总算环境搭好了.于是,想写个程序员的经典程序---hello world. 语法都没错,生成test.c. 命令行运行:arm-linux-gcc ...

  7. Android code wiki

    Android code wiki Tip1: 类的全局静态变量的使用,这样可以静态变量只分配一次内存,可以不通过类的对象也就是可以通过类名直接使用该变量.(使用场景:Request_Code ,Re ...

  8. css3投影讲解、投影

    迷茫了好一段时间,今天开始整理一下自己,同时也整理下新的知识. CSS3: 从头开始做起:现在在页面中用到最多的是图片/容器投影,文字投影: 接下来就总结一个投影问题: box-shadow:阴影类型 ...

  9. tar.xz 文件如何解压

    XZ压缩最新压缩率之王 xz这个压缩可能很多都很陌生,不过您可知道xz是绝大数linux默认就带的一个压缩工具. 之前xz使用一直很少,所以几乎没有什么提起. 我是在下载phpmyadmin的时候看到 ...

  10. YII学习,初体验 ,对YII的一些理解.

    先说点没用的: 不会选择,选择后不坚持,不断的选择.这是人生中的一个死循环,前两一直迷茫.觉得自己前进方向很不明朗.想去学的东西有很多.想学好YII,想学PYTHON 想学学hadoop什么的,又想研 ...