针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考。

首先,Spark文档中aggregate函数定义如下

def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U
Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument instead of creating a new U to avoid memory allocation.   seqOp操作会聚合各分区中的元素,然后combOp操作把所有分区的聚合结果再次聚合,两个操作的初始值都是zeroValue.   seqOp的操作是遍历分区中的所有元素(T),第一个T跟zeroValue做操作,结果再作为与第二个T做操作的zeroValue,直到遍历完整个分区。combOp操作是把各分区聚合的结果,再聚合。aggregate函数返回一个跟RDD不同类型的值。因此,需要一个操作seqOp来把分区中的元素T合并成一个U,另外一个操作combOp把所有U聚合。

zeroValue
the initial value for the accumulated result of each partition for the seqOp operator, and also the initial value for the combine results from different partitions for the combOp operator - this will typically be the neutral element (e.g. Nil for list concatenation or 0 for summation)

seqOp
an operator used to accumulate results within a partition

combOp
an associative operator used to combine results from different partitions

举个例子。假如List(1,2,3,4,5,6,7,8,9,10),对List求平均数,使用aggregate可以这样操作。
C:\Windows\System32>scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) Client VM, Java 1.8.0_91).
Type in expressions for evaluation. Or try :help.

scala> val rdd = List(1,2,3,4,5,6,7,8,9)
rdd: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> rdd.par.aggregate((0,0))(

(acc,number) => (acc._1 + number, acc._2 + 1),

(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)

)
res0: (Int, Int) = (45,9)

scala> res0._1 / res0._2
res1: Int = 5

过程大概这样:

首先,初始值是(0,0),这个值在后面2步会用到。

然后,(acc,number) => (acc._1 + number, acc._2 + 1),number即是函数定义中的T,这里即是List中的元素。所以acc._1 + number, acc._2 + 1的过程如下。

1.   0+1,  0+1

2.  1+2,  1+1

3.  3+3,  2+1

4.  6+4,  3+1

5.  10+5,  4+1

6.  15+6,  5+1

7.  21+7,  6+1

8.  28+8,  7+1

9.  36+9,  8+1

结果即是(45,9)。这里演示的是单线程计算过程,实际Spark执行中是分布式计算,可能会把List分成多个分区,假如3个,p1(1,2,3,4),p2(5,6,7,8),p3(9),经过计算各分区的的结果(10,4),(26,4),(9,1),这样,执行(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)就是(10+26+9,4+4+1)即(45,9).再求平均值就简单了。
————————————————
版权声明:本文为CSDN博主「飞鸿踏雪Ben归来」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qingyang0320/article/details/51603243

理解Spark RDD中的aggregate函数(转)的更多相关文章

  1. Spark RDD中的aggregate函数

    转载自:http://blog.csdn.net/qingyang0320/article/details/51603243 针对Spark的RDD,API中有一个aggregate函数,本人理解起来 ...

  2. Spark Streaming中的操作函数讲解

    Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...

  3. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

  4. Spark Streaming中的操作函数分析

    根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...

  5. 深入理解Spark RDD

    RDD是什么? RDD,全称是Reslilient Distributed Datasets,是一个容错的,并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区.同时,RDD还 ...

  6. 深入理解asp.net中的 __doPostBack函数

    前段时间做一个.net网站的时候,用到了模拟前端按钮刷新updatePanel进行局部刷新的时候,遇见了这个问题,当时没顾上记下来,查看网上资料,记下来留着以后查看. 很早以前,当我刚接触asp.NE ...

  7. 深入源码理解Spark RDD的数据分区原理

    通过内存创建RDD的分区设置 1.示例代码 在创建RDD的时候,我们可以从内存中进行创建:输出保存为文件.为了演示效果,我们的示例代码如下: import org.apache.spark.{Spar ...

  8. Spark RDD中Runtime流程解析

    一.Runtime架构图 (1)从Spark  Runtime的角度讲,包括五大核心对象:Master.Worker.Executor.Driver.CoarseGrainedExecutorBack ...

  9. 轻松理解 Spark 的 aggregate 方法

    2019-04-20 关键字: Spark 的 agrregate 作用.Scala 的 aggregate 是什么 Spark 编程中的 aggregate 方法还是比较常用的.本篇文章站在初学者的 ...

随机推荐

  1. Spring源码阅读总结(Ing)

    一.Spring源码架构 Spring源码地址 二.Spring中的设计模式 1.工厂模式 BeanFactory 2.模板模式 模板的使用者只需设计一个具体的类,集成模板类,然后定制那些具体方法,这 ...

  2. input限制输入

    input 只能输入数字.字母.汉字等   1.文本框只能输入数字代码(小数点也不能输入) <input onkeyup="this.value=this.value.replace( ...

  3. Nginx核心模块内置变量

    本文根据Nginx官网整理了Nginx的ngx_http_core_module模块的内置变量,可与Apache做对比参考.随后做了一次测试观察各变量的值,并附上测试结果. 1.变量列表 $arg_n ...

  4. css透明度、毛玻璃效果

    透明度: 1.opacity    背景颜色和字体同时透明 2.background:rgba(255,255,255,0.2);   只是背景颜色透明,字体不透明 代码: .info{ backgr ...

  5. Hexo 文章图片添加水印,不用云处理

    由于网上找到的都是借用第三方云处理添加水印,但是我不太想用,所以自己开发了一个插件 Hexo 图片添加水印Github地址 目前插件可以直接在 hexo 官网上搜索到 下面内容都是在 Github 上 ...

  6. 利用Metasploit攻击Android

    首先我在Kali下生成一个Android的应用程序,即apk格式的文件,用到的命令是: msfvenom -p android/meterpreter/reverse_tcp LHOST=本地ip L ...

  7. 如何学习numpy

    可以通过官方中文文档 NumPy 中文文档

  8. python-uiautomator2

    简单介绍 python-uiautomator2是一个自动化测试开源工具,仅支持Android平台的原生应用测试. 支持平台及语言 python-uiautomator2封装了谷歌自带的uiautom ...

  9. 通过PHP自带的$_SERVER判断 自动识别移动设备

    因为站点需要,手机端和PC端分离,所以通过PHP自带的$_SERVER判断 自动识别移动设备 代码如下: <?php $agent = $_SERVER['HTTP_USER_AGENT']; ...

  10. oracle中删除表:drop、delete、truncate

    相同点,使用drop delete truncate 都会删除表中的内容 drop table 表名 delete from 表名(后面不跟where语句,则删除表中所有的数据) truncate t ...