P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数
因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树。现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质。
设\(f(i)\)表示以\(i\)为根的子树中满足小根堆性质的情况,那么就有:\(f(i)=f(ls)*f(rs)*C_{sum(i)-1}^{sum(ls)}\)。表示选出\(sum(ls)\)个结点来作为左儿子中的结点,并且左右儿子都满足小根堆的性质。这里左右儿子这两个问题都是独立的,所以可以直接运用乘法原理。
这里求组合数可以直接用Lucas定理来求,Lucas定理为:若p是一个质数,那么\(C_n^m=C_{\frac{n}{p}}^{\frac{m}{p}}*C_{n\mod p}^{m\mod p}\mod p\)。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll ;
const int N = 2e6 + 5;
ll n, p;
ll inv[N], fac[N], s[N], f[N];
ll C(ll a, ll b) {
if(a < b) return 0;
if(a == b || b == 0) return 1;
if(a < p && b < p) return inv[b] * inv[a - b] % p * fac[a] % p;
return C(a % p, b % p) * C(a / p, b / p) % p;
}
ll qp(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans ;
}
int main() {
cin >> n >> p;
fac[0] = 1;
for(int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % p;
for(int i = 1; i <= n; i++) inv[i] = qp(fac[i], p - 2) ;
for(int i = 1; i <= n; i++) s[i] = 1;
for(int i = n; i >= 2; i--) s[i >> 1] += s[i] ;
for(int i = n; i >= 1; i--) {
int ls = i << 1, rs = i << 1 | 1;
if(f[ls] && f[rs]) f[i] = f[ls] * f[rs] % p * C(s[i] - 1, s[ls]) % p;
else if(f[ls]) f[i] = f[ls] ;
else f[i] = 1;
}
cout << f[1] ;
return 0;
}
P2606 [ZJOI2010]排列计数的更多相关文章
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- ●洛谷P2606 [ZJOI2010]排列计数
题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- 【BZOJ2111】[ZJOI2010]排列计数(组合数学)
[BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- BZOJ2111:[ZJOI2010]排列计数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...
随机推荐
- WeQuant教程—1.5 实盘运行须知
为了保证实盘交易程序能够正常稳定地运行,同时保护您在使用时账户资金的安全,我们设计了一些规则和机制.了解这些机制有助于您更快上手实盘交易. 启动前检查机制 在实盘交易程序启动前,系统会执行一次检查,出 ...
- BatchConfigTool批量配置工具
海康批量配置工具BatchConfigTool是一款支持设备在线搜索.批量配置参数.批量升级等功能的软件,支持对大批量设备同时进行各参数的配置,极大的简化了操作过程! 软件功能 1.对在线设备进行搜索 ...
- was unable to refresh its cache! status = Cannot execute request on any known server
出现这种错误是因为: Eureka服务注册中心也会将自己作为客户端来尝试注册它自己,所以我们需要禁用它的客户端注册行为. 在 yml中设置 eureka.client.register-with-eu ...
- xorm-删除和软删除实例
删除数据Delete方法,参数为struct的指针并且成为查询条件.注意:当删除时,如果user中包含有bool,float64或者float32类型,有可能会使删除失败 package main i ...
- 国际化地区语言码对照表(i18n)
af 公用荷兰语 af-ZA 公用荷兰语 - 南非 sq 阿尔巴尼亚 sq-AL 阿尔巴尼亚 -阿尔巴尼亚 ar 阿拉伯语 ar-DZ 阿拉伯语 -阿尔及利亚 ar-BH 阿拉伯语 -巴林 ar-EG ...
- [Centos 7]MYSQL 安装及登录问题
1. Centos 7 上安装mysql 8 rpm -qa |grep -i mysql //看自己系统有没有装mysql wget https://dev.mysql.com/get/mysql8 ...
- Json schema前奏 关于JSON
目录 1. 何为 JSON 2. JSON 基本语法 3. JSON值的类型 4. 与XML比较 5. 辅助工具 1. 何为 JSON JSON( JavaScript Object Notation ...
- 小米手机安装Google框架
方法一 打开应用商店,搜索谷歌安装器下载即可. 方法二 搜索Gmail.Google+.Youtube等软件跳到豌豆荚,自动下载Google框架.
- react新旧生命周期
React16.3.0之前生命周期 16.3开始建议使用新的生命周期
- Python illustrating Downhill simplex method for minimizing the user-supplied scalar function的代码
学习过程,把代码过程较好的代码段做个记录,如下的代码段是关于Python illustrating Downhill simplex method for minimizing the user-su ...