P2606 [ZJOI2010]排列计数

因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树。现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质。

设\(f(i)\)表示以\(i\)为根的子树中满足小根堆性质的情况,那么就有:\(f(i)=f(ls)*f(rs)*C_{sum(i)-1}^{sum(ls)}\)。表示选出\(sum(ls)\)个结点来作为左儿子中的结点,并且左右儿子都满足小根堆的性质。这里左右儿子这两个问题都是独立的,所以可以直接运用乘法原理。

这里求组合数可以直接用Lucas定理来求,Lucas定理为:若p是一个质数,那么\(C_n^m=C_{\frac{n}{p}}^{\frac{m}{p}}*C_{n\mod p}^{m\mod p}\mod p\)。

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll ;
const int N = 2e6 + 5;
ll n, p;
ll inv[N], fac[N], s[N], f[N];
ll C(ll a, ll b) {
if(a < b) return 0;
if(a == b || b == 0) return 1;
if(a < p && b < p) return inv[b] * inv[a - b] % p * fac[a] % p;
return C(a % p, b % p) * C(a / p, b / p) % p;
}
ll qp(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans ;
}
int main() {
cin >> n >> p;
fac[0] = 1;
for(int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % p;
for(int i = 1; i <= n; i++) inv[i] = qp(fac[i], p - 2) ;
for(int i = 1; i <= n; i++) s[i] = 1;
for(int i = n; i >= 2; i--) s[i >> 1] += s[i] ;
for(int i = n; i >= 1; i--) {
int ls = i << 1, rs = i << 1 | 1;
if(f[ls] && f[rs]) f[i] = f[ls] * f[rs] % p * C(s[i] - 1, s[ls]) % p;
else if(f[ls]) f[i] = f[ls] ;
else f[i] = 1;
}
cout << f[1] ;
return 0;
}

P2606 [ZJOI2010]排列计数的更多相关文章

  1. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  2. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  3. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  4. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  5. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  6. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  7. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  8. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  9. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

随机推荐

  1. WeQuant教程—1.5 实盘运行须知

    为了保证实盘交易程序能够正常稳定地运行,同时保护您在使用时账户资金的安全,我们设计了一些规则和机制.了解这些机制有助于您更快上手实盘交易. 启动前检查机制 在实盘交易程序启动前,系统会执行一次检查,出 ...

  2. BatchConfigTool批量配置工具

    海康批量配置工具BatchConfigTool是一款支持设备在线搜索.批量配置参数.批量升级等功能的软件,支持对大批量设备同时进行各参数的配置,极大的简化了操作过程! 软件功能 1.对在线设备进行搜索 ...

  3. was unable to refresh its cache! status = Cannot execute request on any known server

    出现这种错误是因为: Eureka服务注册中心也会将自己作为客户端来尝试注册它自己,所以我们需要禁用它的客户端注册行为. 在 yml中设置 eureka.client.register-with-eu ...

  4. xorm-删除和软删除实例

    删除数据Delete方法,参数为struct的指针并且成为查询条件.注意:当删除时,如果user中包含有bool,float64或者float32类型,有可能会使删除失败 package main i ...

  5. 国际化地区语言码对照表(i18n)

    af 公用荷兰语 af-ZA 公用荷兰语 - 南非 sq 阿尔巴尼亚 sq-AL 阿尔巴尼亚 -阿尔巴尼亚 ar 阿拉伯语 ar-DZ 阿拉伯语 -阿尔及利亚 ar-BH 阿拉伯语 -巴林 ar-EG ...

  6. [Centos 7]MYSQL 安装及登录问题

    1. Centos 7 上安装mysql 8 rpm -qa |grep -i mysql //看自己系统有没有装mysql wget https://dev.mysql.com/get/mysql8 ...

  7. Json schema前奏 关于JSON

    目录 1. 何为 JSON 2. JSON 基本语法 3. JSON值的类型 4. 与XML比较 5. 辅助工具 1. 何为 JSON JSON( JavaScript Object Notation ...

  8. 小米手机安装Google框架

    方法一 打开应用商店,搜索谷歌安装器下载即可. 方法二 搜索Gmail.Google+.Youtube等软件跳到豌豆荚,自动下载Google框架.

  9. react新旧生命周期

    React16.3.0之前生命周期 16.3开始建议使用新的生命周期

  10. Python illustrating Downhill simplex method for minimizing the user-supplied scalar function的代码

    学习过程,把代码过程较好的代码段做个记录,如下的代码段是关于Python illustrating Downhill simplex method for minimizing the user-su ...