P2606 [ZJOI2010]排列计数

因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树。现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质。

设\(f(i)\)表示以\(i\)为根的子树中满足小根堆性质的情况,那么就有:\(f(i)=f(ls)*f(rs)*C_{sum(i)-1}^{sum(ls)}\)。表示选出\(sum(ls)\)个结点来作为左儿子中的结点,并且左右儿子都满足小根堆的性质。这里左右儿子这两个问题都是独立的,所以可以直接运用乘法原理。

这里求组合数可以直接用Lucas定理来求,Lucas定理为:若p是一个质数,那么\(C_n^m=C_{\frac{n}{p}}^{\frac{m}{p}}*C_{n\mod p}^{m\mod p}\mod p\)。

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll ;
const int N = 2e6 + 5;
ll n, p;
ll inv[N], fac[N], s[N], f[N];
ll C(ll a, ll b) {
if(a < b) return 0;
if(a == b || b == 0) return 1;
if(a < p && b < p) return inv[b] * inv[a - b] % p * fac[a] % p;
return C(a % p, b % p) * C(a / p, b / p) % p;
}
ll qp(ll a, ll b) {
ll ans = 1;
while(b) {
if(b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans ;
}
int main() {
cin >> n >> p;
fac[0] = 1;
for(int i = 1; i <= n; i++) fac[i] = 1ll * fac[i - 1] * i % p;
for(int i = 1; i <= n; i++) inv[i] = qp(fac[i], p - 2) ;
for(int i = 1; i <= n; i++) s[i] = 1;
for(int i = n; i >= 2; i--) s[i >> 1] += s[i] ;
for(int i = n; i >= 1; i--) {
int ls = i << 1, rs = i << 1 | 1;
if(f[ls] && f[rs]) f[i] = f[ls] * f[rs] % p * C(s[i] - 1, s[ls]) % p;
else if(f[ls]) f[i] = f[ls] ;
else f[i] = 1;
}
cout << f[1] ;
return 0;
}

P2606 [ZJOI2010]排列计数的更多相关文章

  1. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  2. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  3. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  4. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  5. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  6. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  7. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  8. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  9. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

随机推荐

  1. 如何录制高清GIF格式的图片

    如何录制高清GIF格式的图片 工具:傲软GIF 下载地址:https://www.apowersoft.cn/gif 特点:质量高,能够一帧一帧的修改 使用简单.就不说了.自行尝试.这里只是提供一个制 ...

  2. DDD分层架构的三种模式

    引言 在讨论DDD分层架构的模式之前,我们先一起回顾一下DDD和分层架构的相关知识. DDD DDD(Domain Driven Design,领域驱动设计)作为一种软件开发方法,它可以帮助我们设计高 ...

  3. BFS --- 素数环

    <传送门> [题目大意]对话很坑爹,不过很有意思,直接看题干就可以了.给你两个四位数a和b,现在要你从a经过变换得到b,并且变换的中间的每一位都要是素数,并且相邻两个素数之间只能有一个位不 ...

  4. Java学习笔记二——正则表达式

    Java正则表达式 正则表达式的规则 “abc” 匹配字符串abc [abc] 匹配[]里任意一个字符 [a-z]: 匹配所有小写字母中的任意一个字符 [A-Z]: 匹配所有大写字母中的任意一个字符 ...

  5. golang微服务框架go-micro 入门笔记2.3 micro工具之消息接收和发布

    本章节阐述micro消息订阅和发布相关内容 阅读本文前你可能需要进行如下知识储备 golang分布式微服务框架go-micro 入门笔记1:搭建go-micro环境, golang微服务框架go-mi ...

  6. Spring MVC之@ControllerAdvice详解

    本文链接:https://blog.csdn.net/zxfryp909012366/article/details/82955259   对于@ControllerAdvice,我们比较熟知的用法是 ...

  7. VMware 网络介绍

       3.1 网卡介绍 如图所示,你的机器有两块网卡,一个是有线,一个是无线. 装完VM之后,会出现两块虚拟网卡,如图 VM有四种连接方式,我们着重介绍前三种    3.2 桥接 选择桥接模式,说明V ...

  8. C#中Chart的简单使用(柱状图和折线图)

    首先创建一个windows窗体应用程序,在工具箱—>数据中拖拽一个Chart控件,设置ChartArea背景色为黄色,Legend背景色为绿色,三个Series,Name属性分别为1,2,3,添 ...

  9. Jmeter:内存配置 -- 转发

    在压测过程中jmeter报内存溢出,可能的原因有很多.要注意下面三点: 1.单击压测过程中使用过多的线程,官网建议1000-2000.具体看机器的配置和启动应用的情况.(A single JMeter ...

  10. 又一个js乱码的秘密alert放在js文件里中文乱码,可是放在HTML里显示中文就很好

    用文本文档打开你的js文件,文件-另存为,编码更改为UTF-8保存. 回复 | PFly | 园豆:94 (初学一级) | 2017-07-17 21:32 显示结果中文乱码 支持(0)反对(0)回复 ...