1. 环境

  • ubuntu16.04
  • GTX1080Ti x 4
  • nvidia-418
  • cuda-10.1
  • pytorch1.0.0

目标:在最新的显卡驱动下,使用不同版本的cuda和深度学习框架来执行、编译模型代码。

2. 前言

众所周知,NVIDIA的cuda版本更新的很快,且不同cuda版本不兼容,所以导致有些模型的部分layer在cuda编译时,十分的麻烦。

例如我碰到的例子,实验室需要运行flownet2.0,NVIDIA给出了官方实现,但其中有几个layer使用了cuda编写,在运行模型之前要先编译这几个layer,这就导致了几个问题:

  1. pytorch版本限制为0.4.1,实验室服务器的版本是1.0.0
  2. cuda版本要求9.0,实验室服务器的版本是10.1

在不能回退服务器版本的情况下,就需要献上docker大法了,这也是本篇博客的主题。

3. 更新nvidia驱动

在切换cuda之前,我推荐给你的服务器来个大升级,把驱动更新到最新以支持最新版的cuda(目前是10.1)。

但是驱动也不是随意更新的,例如我安装nvidia-410和nvidia-415驱动,都不能识别显卡(nvidia-smi命令运行不了)。

大家肯定常常听说,cuda的恐怖之处在于需要和显卡驱动版本对应,其实cuda-8.0后就没有这个问题了,可以看NVIDIA给出的版本对照表格:

https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

所以其实只需要保持驱动最新就行了,没有版本的上限,所以推荐给你的驱动做一下升级。

首先查看推荐驱动:

sudo ubuntu-drivers devices

输出:

== /sys/devices/pci0000:80/0000:80:03.0/0000:83:00.0 ==
modalias : pci:v000010DEd00001B06sv000010DEsd0000120Fbc03sc00i00
vendor : NVIDIA Corporation
driver : nvidia-418 - third-party free recommended
driver : nvidia-396 - third-party free
driver : nvidia-415 - third-party free
driver : nvidia-390 - third-party free
driver : nvidia-410 - third-party free
driver : xserver-xorg-video-nouveau - distro free builtin
driver : nvidia-384 - distro non-free

可见推荐的驱动为nvidia-418

建议在安装新驱动之前卸载旧版本驱动:

sudo apt-get remove --purge '^nvidia-.*'
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-418 # 需要重启才能生效
sudo reboot

安装完成后检查是否生效:

nvidia-smi

4. 安装docker和nvidia-docker

这一步就跳过啦,网上已经有很多教程了。

验证是否可以运行多cuda环境(会自动pull不存在的镜像):

docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
docker run --runtime=nvidia --rm nvidia/cuda:10.0-base nvidia-smi

5. 万金油,启动

万金油docker:https://github.com/ufoym/deepo (docker hub上的说明文档更新不及时)

可以看到你可以选择不同版本的cuda来安装镜像,这里以flownet2.0需要的pytorch0.4.1和cuda-9.0举例:

首先把cuda-9.0 + pytorch的镜像拉取下来:

docker pull ufoym/deepo:pytorch-py36-cu90

运行(这里假设你的数据放在/home/ubuntu/data下:

docker run --runtime=nvidia -it -v /home/ubuntu/data:/data ufoym/deepo:pytorch-py36-cu90 bash

此时就会进入docker的bash,我们来检查一下版本是否正确:

root@6b0ddf89d46f:/# python
Python 3.6.8 (default, Dec 24 2018, 19:24:27)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.__version__
'1.0.0'
>>> torch.version.cuda
'9.0.176'
>>>

可以发现cuda版本对了,但是torch还是1.0.0,这个时候我们只需要查阅一下pytorch的官网,重装一下pytorch就行了。

旧版本参阅:https://pytorch.org/get-started/previous-versions/

# 卸载旧版本
pip uninstall pytorch-nightly torchvision-nightly # 安装新版
pip install https://download.pytorch.org/whl/cu90/torch-0.4.1-cp36-cp36m-linux_x86_64.whl

再次验证后,torch版本已经修改到了0.4.1:

root@6b0ddf89d46f:/# python
Python 3.6.8 (default, Dec 24 2018, 19:24:27)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.__version__
'0.4.1'
>>> torch.version.cuda
'9.0.176'
>>>

这个时候我们就能cd到data目录下,对flownet的几个cuda layer进行编译了。

但是如果你退出了docker bash,这个镜像会被关闭,这个时候只需要执行以下命令就可以再次进入:

# 查看刚刚启动的镜像id
docker ps -a # 启动镜像
docker start 6b0dd # 进入bash
docker exec -it 6b0dd bash # 当你再次退出时就不需要重新启动镜像了,直接用上述命令进入即可。

6. 总结

做完上述事情后,我们就可以在最新的显卡驱动下,使用各版本的cuda来编译我们的代码了。

7. 参考资料

参考博客:

http://andy51002000.blogspot.com/2019/01/nvidia-smi-has-failed-because-it.html

CUDA版本列表:

https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

查看推荐驱动:

sudo ubuntu-drivers devices

查看显卡是否识别:

lspci | grep 'VGA'

确认kernel版本:

uname -a

升级ubuntu:

sudo do-release-upgrade -d

安装驱动:

sudo apt-get remove --purge '^nvidia-.*'
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-418

重启

sudo reboot

查看安装是否成功

nvidia-smi

检测cuda10在docker中是否可用:

docker run --runtime=nvidia --rm nvidia/cuda:10.0-base nvidia-smi

安装deepo:

docker pull ufoym/deepo:all-jupyter-py36-cu100

[AI] 切换cuda版本的万金油的更多相关文章

  1. cmake编译opencv时指定cuda版本

    之前有网友提问说,基于cmake编译时如果切换cuda版本,比如我同时装了cuda8和cuda9,opencv总是找到cuda9,我想用cuda8怎么办?实际上,手头上要配置的工程是基于opencv3 ...

  2. linux上怎么切换不同版本的arm-linux-gcc?只需改一行函数

    linux上怎么切换不同版本的arm-linux-gcc?只需改一行函数 ln -s /usr/local/arm/3.4.1/bin/arm-linux-gcc /usr/bin/arm-linux ...

  3. mac 切换php版本

    通过brew安装的php可以通过brew link和brew unlink来切换不同版本 #brew list #brew unlink php56 #brew link php55

  4. 在macOS上通过pyenv安装和切换多版本Python

    1. 安装homebrew 官网 http://brew.sh/index_zh-cn.html 打开终端,在终端中粘贴如下脚本 /usr/bin/ruby -e "$(curl -fsSL ...

  5. 使用nvm管理node不同版本,安装,环境配置,切换不同版本的node版本

    文章包含以下内容: 一.下载地址 二.nvm-noinstall.zip安装 三.nvm-setup.zip安装 四.测试安装以及使用 一.下载地址 https://github.com/coreyb ...

  6. lnmp 切换PHP版本,并且安装swoole

    lnmp 切换php版本 进入 lnmp 安装的目录,进入install.sh 的目录执行: sudo ./install.sh mphp 备注: find / -name install.sh 备注 ...

  7. 使用GNVM工具高效切换node版本

    在开发中,有时候需要在多个node版本之间切换,重复手动下载安装node安装包来切换版本很麻烦,在Mac系统中可以使用nvm工具,而windows系统无法使用nvm工具.gnvm解决了在windows ...

  8. 切换JDK版本时修改JAVA_HOME环境变量不生效(转)

    当电脑上存在多个版本的JDK时,可能 会遇到想切换版本时无论你如何改JAVA_HOME的路径 进入cmd java -version 都无法得到最新设置的JDK版本 如果遇到类似以下信息 Regist ...

  9. Linux(ubuntu18.04)切换python版本

    前言 Ubuntu18.04系统在安装python时会安装两个版本:2.7和3.6.默认情况下系统环境使用的是python2,但是我们有时需要使用python3来作为我们的开发环境,所以需要自由切换p ...

随机推荐

  1. 推荐一款好用的免费FTP客户端Filezilla

    官网地址:https://filezilla-project.org/

  2. [Swoole入门到进阶] [公开课] Swoole协程-Swoole4.4.4 提供 WaitGroup 功能

    在 Swoole4 中可以使用 channel 实现协程间的通信.依赖管理.协程同步. 简单来说,WaitGroup 就是使用 channel 的机制,让主协程等待所有子协程结束后才退出的功能. Co ...

  3. TimSort Java源码个人解读

    /*JDK 1.8 */ package java.util; /** * A stable, adaptive, iterative mergesort that requires far fewe ...

  4. GitHub: Oracle Database on Docker 为测试 改天试试

    Oracle Database on Docker https://github.com/oracle/docker-images/tree/master/OracleDatabase/SingleI ...

  5. WSAEventSelect模型

    WSAEventSelect模型 EventSelect WSAEventSelect function The WSAEventSelect function specifies an event ...

  6. 手撕面试官系列(六):并发+Netty+JVM+Linux面试专题

    并发面试专题 (面试题+答案领取方式见侧边栏) 现在有 T1.T2.T3 三个线程,你怎样保证 T2 在 T1 执行完后执行,T3 在 T2 执行完后执行? 在 Java 中 Lock 接口比 syn ...

  7. gtest入门

    介绍 gtest是谷歌开发的用来做C++单元测试的测试框架 基本概念 使用gtest,你就需要写断言(assertions),用来检查一个表达式是否为true.断言的结果有三个:正确.非致命错误.致命 ...

  8. Delphi文字转语音TTS【支持选择语音库,播放,暂停,开始,停止,生成语音文件,设置音量,设置语速】

    作者QQ:(648437169) 点击下载➨文字转语音TTS [Delphi 文字转语音TTS]调用系统自带的TTS组件,支持XP,vista,win7,win8,win10系统,支持选择语音库,播放 ...

  9. 如何修改通过Anaconda安装的jupyter notebook的工作目录

    通过Anaconda安装jupyter notebook,对新手来说是一个非常明智的选择,可以避免很多不必要的麻烦! jupyter notbook默认情况下的工作目录是c:\user\...,接下来 ...

  10. 【实战经验】--Xilinx--Chipscope使用

    1)在工程右键点击New Source 新建Chioscope,在File name 填写名称: 2)新建完成后,工程里会出现你建立的chipscope文件(如下图chip_ddr3.cdc)双击打开 ...