[LOJ#3120][Luogu5401][CTS2019]珍珠(容斥+生成函数)
https://www.luogu.org/blog/user50971/solution-p5401
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=,i2=;
int D,n,m,ans,fac[N],inv[N],ip2[N],f[N],g[N],rev[N],a[N],b[N]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int C(int n,int m){ return n<m ? : 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod; } void NTT(int a[],int n,bool f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(,f?(mod-)/(i<<):(mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
}
if (f) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} int main(){
freopen("pearl.in","r",stdin);
freopen("pearl.out","w",stdout);
scanf("%d%d%d",&D,&n,&m);
if (n-*m<){ puts(""); return ; }
if (n-*m>=D){ printf("%d\n",ksm(D,n)); return ; }
fac[]=ip2[]=;
rep(i,,D) fac[i]=1ll*fac[i-]*i%mod,ip2[i]=1ll*ip2[i-]*i2%mod;
inv[D]=ksm(fac[D],mod-);
for (int i=D; i; i--) inv[i-]=1ll*inv[i]*i%mod; int l=,L=,t=;
while (l<=(D<<)) l<<=,L++;
for (int i=; i<l; i++) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
rep(i,,D) a[i]=1ll*t*ksm(D-*i+mod+mod,n)%mod*inv[i]%mod,b[i]=inv[i],t=mod-t;
NTT(a,l,); NTT(b,l,);
for (int i=; i<l; i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,l,);
rep(i,,D) f[i]=1ll*ip2[i]*fac[i]%mod*C(D,i)%mod*a[i]%mod;
for (int i=; i<l; i++) a[i]=b[i]=; t=(D&)?mod-:;
rep(i,,D) a[i]=1ll*f[i]*fac[i]%mod,b[i]=1ll*t*inv[D-i]%mod,t=mod-t;
NTT(a,l,); NTT(b,l,);
for (int i=; i<l; i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,l,);
rep(i,,D) g[i]=1ll*a[D+i]*inv[i]%mod;
rep(i,,n-*m) ans=(ans+g[i])%mod;
printf("%d\n",ans);
return ;
}
[LOJ#3120][Luogu5401][CTS2019]珍珠(容斥+生成函数)的更多相关文章
- LOJ3120. 「CTS2019」珍珠 [容斥,生成函数]
传送门 思路 非常显然,就是要统计有多少种方式使得奇数的个数不超过\(n-2m\).(考场上这个都没想到真是身败名裂了--) 考虑直接减去钦点\(n-2m+1\)个奇数之后的方案数,但显然这样会算重, ...
- Luogu5401 CTS2019珍珠(生成函数+容斥原理+NTT)
显然相当于求有不超过n-2m种颜色出现奇数次的方案数.由于相当于是对各种颜色选定出现次数后有序排列,可以考虑EGF. 容易构造出EGF(ex-e-x)/2=Σx2k+1/(2k+1)!,即表示该颜色只 ...
- bzoj3771: Triple(容斥+生成函数+FFT)
传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...
- 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)
点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...
- 5.15 省选模拟赛 容斥 生成函数 dp
LINK:5.15 T2 个人感觉生成函数更无脑 容斥也好推的样子. 容易想到每次放数和数字的集合无关 所以得到一个dp f[i][j]表示前i个数字 逆序对为j的方案数. 容易得到转移 使用前缀和优 ...
- [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)
这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...
- @loj - 3120@ 「CTS2019 | CTSC2019」珍珠
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机 ...
- [JSOI2019]神经网络(树形DP+容斥+生成函数)
首先可以把题目转化一下:把树拆成若干条链,每条链的颜色为其所在的树的颜色,然后排放所有的链成环,求使得相邻位置颜色不同的排列方案数. 然后本题分为两个部分:将一棵树分为1~n条不相交的链的方案数:将这 ...
- LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...
随机推荐
- P4279 【[SHOI2008]小约翰的游戏】
我怎么什么都不会啊\(QAQ\)博弈论怎么和期望一样玄学啊\(QAQ\) 我们分几种情况讨论: \(Case1\):只有一堆且为1,那么后手胜利 \(Case2\):每一堆都是1,那么只需要判断奇偶性 ...
- 原创:搜索排序算法之自定义性能优良的PriorityQueue(与Python的heap比较)
前几天写了一篇关于"史上对BM25模型最全面最深刻解读以及lucene排序深入解读"的博客,lucene最后排序用到的思想是"从海量数据中寻找topK"的时间空 ...
- 不能对以下表使用 TRUNCATE TABLE
1.由 FOREIGN KEY 约束引用的表.(您可以截断具有引用自身的外键的表.) 2.参与索引视图的表. 3.通过使用事务复制或合并复制发布的表. 4.对于具有以上一个或多个特征的表,请使用 DE ...
- app内嵌H5的上传图片的功能
1.上传组件 <!-- - hasBorder {Boolean} cell底部边框,oneline 为 true 有效 - inlineBorder {Boolean} cell底部短边框 - ...
- SDN阅读作业(二)
前言碎碎念 当我看到这个全英论文以后,身体和心理都出现了戒断反应,让人无比难受,毕竟自己很久没做过英语阅读理解了.总之,在舍友大佬的帮助下以及各款翻译软件的鼎力支持之下(通篇读完后还是找了中文文献来对 ...
- linux性能监控常用命令
概述 我们在linux下,如果想要监控服务器性能.我们必须掌握以下常用的指标查看命令. ps pstree top free vmstat sar ps ps命令能给出当前系统中进程的快照.下面我们列 ...
- Hadoop平台上HDFS和MapReduce的功能
1.用自己的话阐明Hadoop平台上HDFS和MapReduce的功能.工作原理和工作过程. HDFS (1)第一次启动 namenode 格式化后,创建 fsimage 和 edits 文件.如果不 ...
- Java内存模型与Volatile,Happen-Before原则等
Java的内存模型 Java内存模型(JMM)是一个抽象的模型.决定了线程主要定义了线程和内存间的抽象关系:主内存存放的是线程共享变量,每个线程有自己的工作内存,存放变量的副本,只能对副本进行读写, ...
- centos安装redis 5.0版本的集群
我在本地VM-Centos里安装5.0.5时安装遇到了些问题,参考了Blog:https://www.cnblogs.com/shawhe/p/9548620.html 顺利安装完成. 安装redis ...
- rabbitmq - 消息接收,解析xml格式数据时异常:ERROR not well-formed (invalid token): line 4, column 46
ERROR alsv odoo.addons.cus_alsv.utils.alsv_about_mq.get_data_from_mq: parse_xml_data_from_mq: not we ...