常见的概率分布类型(二)(Probability Distribution II)
以下是几种常见的离散型概率分布和连续型概率分布类型:
伯努利分布(Bernoulli Distribution):常称为0-1分布,即它的随机变量只取值0或者1。
伯努利试验是单次随机试验,只有"成功"(1)或"失败"(0)这两种结果。假如某次伯努利实验成功的概率为p,失败的概率为q=1-p,那么实验成功或失败的概率可以写成:。
伯努利分布的期望:
伯努利分布的方差:
二项分布(Binomial Distribution):用以描述n次独立的伯努利实验中有x次成功的概率。
假如每次伯努利实验成功的概率为p,失败的概率为q=1-p,那么n次独立的伯努利实验中有x次成功的概率是:。这就是二项分布的概率质量函数。
二项分布的期望:E(x)=μ=np
二项分布的方差:Var(x)=σ2=npq
最常见的二项分布问题就是多次投硬币:投掷10次均匀的硬币,其中恰好有5次正面朝上的概率是多少?
投掷10次均匀的硬币,其中至少有8次正面朝上的概率是多少?
当n>50,p<0.1时,二项分布可以转换成泊松分布。
当np>5以及nq>5时,二项分布可以转换成正态分布。但是由于正态分布是连续变量,所以需要加一个continuity correction,例如:P(x<=a)--->P(x<a+0.5)。
几何分布(Geometric Distribution):用以描述n次独立的伯努利试验中试验x次才第一次成功的概率。
假如每次伯努利实验成功的概率为p,失败的概率为q=1-p,那么n次独立的伯努利实验中试验x次才第一次成功的概率是:。
几何分布的期望:E(x)=1/p
几何分布的方差:Var(x)=q/p2
超几何分布(Hypergeometric Distribution):用以描述从有限个(N个)物件中抽出n个物件(不放回),其中抽出k个指定种类物件的概率。
假如有N个物品,其中K个是某个特定种类,从这N个物品中抽出n个,其中k个是K种物品的概率是:。

超几何分布的期望:
超几何分布的方差:
最常见的超几何分布问题就是抽取卡牌:一副卡片共有20张,其中6张是红色的,14张是黑色的。从这20张卡片中随机抽取5张,其中4张是红色卡片的概率是多少?
当时,





多项分布(Multinomial Distribution):用以描述n次独立试验中有nx次出现结果x的概率。
伯努利实验每次都只有2个可能的结果,若将其扩展为x个可能的结果,将该独立试验重复n次,那么出现n1次p1,n2次p2,...,nx次px结果的概率是:
其中:
- n是试验的次数
- n1是出现结果1的次数
- n2是出现结果2的次数
- nx是出现结果x的次数
- p1是结果1出现的概率
- p2是结果2出现的概率
- px是结果x出现的概率
- pi>0,p1+p2+...+px=1
最常见的多项分布问题就是多次投骰子:投掷10次均匀的骰子,1次结果是6点,4次结果是4点,5次结果是2点的概率是多少?
多项分布和二项分布的区别在于:二项分布试验每次只有2个结果,而多项分布试验每次可以有多个结果。
均匀分布(Uniform Distribution):随机变量在等长度的区间上取值的概率是相同的。
例如:投掷一颗均匀的骰子,每一面出现的概率都相同。
概率密度函数:(a≤x≤b)
均匀分布的期望:E(X) = (1/2)(a + b)
均匀分布的方差:Var(x) = (1/12)(b-a)2
泊松分布(Poisson Distribution):用以描述在某个时间或空间范围内,某事件发生x次的概率。
其概率质量函数为:。(其中x是在某个时间或空间范围内事件发生的次数,λ是事件发生的平均次数)
泊松分布的期望:λ
泊松分布的方差:λ
最常见的泊松分布问题就是计算单位时间内经过某地的车辆数,或者单位时间内经过某地n辆车的概率。以公交车为例,假设我们知道它过去每个小时平均会5次经过其中一个站点(λ=5),那么它接下来一个小时经过该站点1次,4次,5次,10次的概率分别是多少?
当x=1时:P(1)=e−551/1!≈0.034
当x=4时:P(4)=e−554/4!≈0.175
当x=5时:P(5)=e−555/5!≈0.175
当x=10时:P(10)=e−5510/10!≈0.018
当λ>5时,泊松分布可以转换成正态分布。但是由于正态分布是连续变量,所以需要加一个continuity correction。
指数分布(Exponential Distribution):用以描述泊松过程中随机事件发生的时间间隔的概率。泊松过程即事件以恒定的平均速率连续且独立地发生的过程。
例如:等公交车,两辆车到来的时间间隔,就符合指数分布。
其概率密度函数是:F(x) = λe − λx(x≥0,λ>0)(λ是单位时间事件发生的次数,x是事件发生的时间间隔)

其累积分布函数是:F(x) = 1 − e − λx(x ≥ 0; λ > 0) --- 表示在某个时间间隔内事件发生的概率(如果要表示在某个时间间隔内事件未发生的概率,则用1-F(x)=e − λx)
指数分布的期望:1/λ
指数分布的方差:1/λ2
指数分布主要用于测试产品可靠性。例如:某电视机厂生产的电视机平均10年出现1次大故障,且故障发生的次数服从泊松分布。求该电视机使用15年后还没有出现大故障的概率?
指数分布是无记忆性的。你等待的时间越长,事件发生的概率并不会发生改变。例如:某地发生了一次水灾,那么该地区在接下来一周,或十年以后发生水灾的概率是一样的。
总结如下:
几何分布 | 二项分布 | 指数分布 | 超几何分布 | 泊松分布 | |
概率分布类型 |
离散型概率分布 |
离散型概率分布 |
连续型概率分布 | 离散型概率分布 | 离散型概率分布 |
实验要求 |
|
|
|
|
|
随机变量 | 获得第一次成功的试验次数 | 试验成功的次数 | 事件发生的时间间隔 | 抽取指定种类物件的个数 | 在某个时间或空间范围内,某事件发生的次数 |
概率密度函数 或 概率质量函数 |
![]() |
F(x) = λe − λx(x≥0,λ>0) | ![]() |
![]() |
|
应用 | 进行n次独立的伯努利试验,求试验x次才第一次成功的概率 | 进行n次独立的伯努利实验,求x次成功的概率 | 已知单位时间内事件发生次数,求一段时间间隔内发生该事件的概率 | 从有限个(N个)物件中抽出n个物件(不放回),求其中抽出k个指定种类物件的概率 | 已知单位时间或空间内某事件发生的平均概率,求一段时间内发生x次该事件的概率或求一段时间内发生该事件的次数 |
常见的概率分布类型(二)(Probability Distribution II)的更多相关文章
- 常见的概率分布类型(Probability Distribution)
统计学中最常见的几种概率分布分别是正态分布(normal distribution),t分布(t distribution),F分布(F distribution)和卡方分布(χ2 distribut ...
- paper 115:常见的概率分布(matlab作图)
一.常见的概率分布 表1.1 概率分布分类表 连续随机变量分布 连续统计量分布 离散随机变量分布 分布 分布 二项分布 连续均匀分布 非中心 分布 离散均匀分布 (Gamma)分布 分布 几何分布 指 ...
- ASP.NET MVC 描述类型(二)
ASP.NET MVC 描述类型(二) 前言 上个篇幅中说到ControllerDescriptor类型的由来过程,对于ControllerDescriptor类型来言ActionDescriptor ...
- Android自动化压力测试之Monkey Test Android常见的错误类型及黑白名单的使用方法(四)
Android常见的错误类型有两种 1.ANR类型 1)在5秒内没有响应输入的事件(例如,按键按下,屏幕触摸) 2)BroadcastReceiver在10秒内没有执行完毕 2.Crash类型 1)异 ...
- lintcode:搜索二维矩阵II
题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...
- Study notes for Discrete Probability Distribution
The Basics of Probability Probability measures the amount of uncertainty of an event: a fact whose o ...
- Android jni 编程4(对基本类型二维整型数组的操作)
Android jni 编程 对于整型二维数组操作: 类型一:传入二维整型数组,返回一个整型值 类型二:传入二维整型数组,返回一个二维整型数组 声明方法: private native int Sum ...
- 游戏开发中IIS常见支持MIME类型文件解析
游戏开发中IIS常见支持MIME类型文件解析 .apkapplication/vnd.android .ipaapplication/vnd.iphone .csbapplication/octet- ...
- 95. 不同的二叉搜索树 II
95. 不同的二叉搜索树 II 题意 给定一个整数 n,生成所有由 1 ... n 为节点所组成的二叉搜索树. 解题思路 这道题目是基于不同的二叉搜索树进行改进的: 对于连续整数序列[left, ri ...
随机推荐
- c++小学期大作业攻略(五)基于QSS的样式美化
这回真的是最后一篇了. 前面说过,我们开发过程中暂时不搭理样式问题,等最后再一起处理,那么现在就是最后处理时刻了!看到网上说QSS跟CSS差不多,我还觉得自己可以干回老本行了,结果用起来发现,QSS是 ...
- 关于NB-IoT,没有比这篇更通俗易懂的啦!
来源:内容来自「鲜枣课堂」,谢谢. 大家好,我是小枣君. 今天,我是来“吹NB”的.嗯,标题已经剧透了,这个NB,就是NB-IoT. 在过去的一年多,NB-IoT真的可以说是大红大紫.在通信圈里,除了 ...
- 【spring boot】spring boot的自定义banner修改+spring boot启动项目图标修改
1.启动Spring Boot项目后会看到这样的图案,这个图片其实是可以自定义的,打开网站 http://patorjk.com/software/taag/#p=display&h=3&am ...
- GAN——生成手写数字
<Generative Adversarial Nets>是 GAN 系列的鼻祖.在这里通过 PyTorch 实现 GAN ,并且用于手写数字生成. 摘要: 我们提出了一个新的框架,通过对 ...
- Linux之《荒岛余生》(三)内存篇
原文:https://juejin.im/post/5c00aee06fb9a049be5d3641 小公司请求量小,但喜欢滥用内存,开一堆线程,大把大把往jvm塞对象,最终问题是内存溢出. 大公司并 ...
- 2019 中细软java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.中细软等公司offer,岗位是Java后端开发,因为发展原因最终选择去了中细软,入职一年时间了,也成为了面试官 ...
- SAP云平台和第三方CRM解决方案(火锅)互联
光看封面配图,这篇文章很容易被误认为在讲成都的美食之一:火锅. SAP成都研究院坐落在被联合国教科文组织授予过"美食之都"称号的成都,所在的天府软件园,半径1公里左右星罗棋布着很多 ...
- Java面经入口(持续更新...)
大数据面经 https://zhuanlan.zhihu.com/go-for-it Java 基础知识复习 您可能不知道Java基础40道常见面试题及详细答案 hashcode详解 Java St ...
- jQuery Validate验证框架详解,提交前验证
现在都用h5表单进行验证了,以下方式仅做回忆 https://www.runoob.com/jquery/jquery-plugin-validate.html <!DOCTYPE HTML P ...
- 遇到的一个Buffer too small问题
在ROI中输出图像时遇到 经调试后发现是driver.Create时设置的波段数大于实际写入的波段数导致的 这里xImgIn.m_nBands有204,但实际写入的数据的bands只有3,修改时忘了修 ...